幫助中心 | 我的帳號 | 關於我們

三維建模學習演算法(英文版)/人工智慧與大數據系列

  • 作者:吳素萍//李雷//張博洋|責編:劉志紅
  • 出版社:電子工業
  • ISBN:9787121516085
  • 出版日期:2025/11/01
  • 裝幀:平裝
  • 頁數:419
人民幣:RMB 278 元      售價:
放入購物車
加入收藏夾

內容大鋼
    基於圖像視頻的三維建模是3D數字技術的核心內容,可以重建真實3D場景和人物,廣泛應用於機器人及自動駕駛等領域,屬於跨學科研究領域,具有很高的研究和應用價值。
    本書圍繞圖像視頻三維建模的新研究技術和方法展開,重點關注挑戰性問題,並進行了系統研究和介紹,包括3D物體建模、3D人面部建模、3D人體姿態建模及通用建模的相關學習演算法,是一本系統介紹三維建模先進方法的研究專著。書中描述的所有演算法都來自我們的研究成果,與最先進方法進行了比較,驗證了有效性和先進性。本書將使人工智慧及信息電腦等領域的研究人員、專業人士和研究生受益,對跨學科研究也非常有用。

作者介紹
吳素萍//李雷//張博洋|責編:劉志紅

目錄
Chapter 1 Introduction
  1.1 3D Object Modeling
    1.1.1 Single-View 3D Reconstruction
    1.1.2 Multi-View 3D Reconstruction Method
  1.2 3D Face Modeling
    1.2.1 3D Face Keypoint Detection
    1.2.2 3D Face Reconstruction
  1.3 3D Human Body Modeling
    1.3.1 3D Human Pose Estimation
    1.3.2 3D Human Body Reconstruction
  1.4 3D Reconstruction Modeling
  1.5 Outline of the Work
  Bibliography
Chapter 2 3D Object Modeling
  2.1 Single-View 3D Object Modeling
    2.1.1 Multi-Scale Edge-Guided Learning for 3D Reconstruction
    2.1.2 Multi-Granularity Relationship Reasoning Network for High-Fidelity 3D Shape Reconstruction
    2.1.3 3D Shape Reconstruction Based on Dynamic Multi-Branch Information Fusion
    2.1.4 Hierarchical Feature Learning Network for 3D Object Reconstruction
  2.2 Multi-View 3D Object Modeling
    2.2.1 High-Resolution Multi-View Stereo with Dynamic Depth Edge Flow
    2.2.2 Global Contextual Complementary Network for Multi-View Stereo
    2.2.3 Attention-Guided Multi-View Stereo Network for Depth Estimation
    2.2.4 Self-Supervised Edge Structure Learning for Multi-View Stereo and Parallel Optimization
    2.2.5 Layered Decoupled Complementary Networks for Multi-View Stereo
    2.2.6 Global Balanced Networks for Multi-View Stereo
  Bibliography
Chapter 3 3D Face Keypoint Detection
  3.1 Learning Relation-Sensitive Structured Network for Robust Face Alignment
    3.1.1 Introduction
    3.1.2 Proposed Method
    3.1.3 Experiments
    3.1.4 Conclusion
  3.2 Multi-Agent Deep Collaboration Learning for Face Alignment under Different Perspectives
    3.2.1 Introduction
    3.2.2 Proposed Method
    3.2.3 Experiments
    3.2.4 Conclusion
  3.3 Towards Accurate 3D Face Alignment under Extreme Scenarios via Multi-Granularity Perturbation Relearning
    3.3.1 Introduction
    3.3.2 Proposed Method
    3.3.3 Loss Function
    3.3.4 Experiments
    3.3.5 Conclusion
  Bibliography
Chapter 4 3D Face Reconstruction
  4.1 Towards Rich-Detail 3D Face Reconstruction and Dense Alignment via Multi-Scale Detail Augmentation
    4.1.1 Introduction
    4.1.2 Proposed Method
    4.1.3 Experiments

    4.1.4 Conclusion
  4.2 Multi-Attribute Regression Network for Face Reconstruction
    4.2.1 Introduction
    4.2.2 Proposed Method
    4.2.3 Experiments
    4.2.4 Conclusion
  4.3 Geometry Normal Consistency Loss for 3D Face Reconstruction and Dense Alignment
    4.3.1 Introduction
    4.3.2 Proposed Method
    4.3.3 Experiments
    4.3.4 Conclusion
  4.4 Complementary Learning Network for 3D Face Reconstruction and Alignment
    4.4.1 Introduction
    4.4.2 Proposed Method
    4.4.3 Experiments
    4.4.4 Conclusion
  4.5 Graph Structure Reasoning Network for Face Alignment and Reconstruction
    4.5.1 Introduction
    4.5.2 Proposed Method
    4.5.3 Experiments
    4.5.4 Conclusion
  4.6 Unsupervised Shape Enhancement and Factorization Machine Network for 3D Face Reconstruction
    4.6.1 Introduction
    4.6.2 Proposed Method
    4.6.3 Experiments
    4.6.4 Conclusion
  4.7 A Detail Geometry Learning Network for High-Fidelity Face Reconstruction
    4.7.1 Introduction
    4.7.2 Proposed Method
    4.7.3 Experiments
    4.7.4 Conclusion
  4.8 A Bi-Directional Optimization Network for De-Obscured 3D High-Fidelity Face Reconstruction
    4.8.1 Introduction
    4.8.2 Proposed Method
    4.8.3 Experiments
    4.8.4 Conclusion
  Bibliography
Chapter 5 3D Human Pose Estimation
  5.1 Multi-Hybrid Extractor Network for 3D Human Pose Estimation
    5.1.1 Introduction
    5.1.2 Proposed Method
    5.1.3 Experiments
    5.1.4 Conclusion
  5.2 3D Human Pose Estimation Based on Center of Gravity
    5.2.1 Introduction
    5.2.2 Proposed Method
    5.2.3 Experiments
    5.2.4 Conclusion
  5.3 Edge-Angle Structure Constraint Loss for 3D Human Pose Estimation
    5.3.1 Introduction

    5.3.2 Related Works
    5.3.3 Proposed Method
    5.3.4 Experiments
    5.3.5 Conclusion
  Bibliography
Chapter 6 3D Human Body Reconstruction
  6.1 Two-Stage Co-Segmentation Network Based on Discriminative Representation for Recovering Human Mesh from Videos
    6.1.1 Introduction
    6.1.2 Related Works
    6.1.3 Proposed Method
    6.1.4 Experiments
    6.1.5 Conclusion
  6.2 Frame-Level Feature Tokenization Learning for Human Body Pose and Shape Estimation
    6.2.1 Introduction
    6.2.2 Related Works
    6.2.3 Proposed Method
    6.2.4 Experiments
    6.2.5 Conclusion
  6.3 Time-Frequency Awareness Network for Human Mesh Recovery from Videos
    6.3.1 Introduction and Related Works
    6.3.2 Proposed Method
    6.3.3 Experiments
    6.3.4 Conclusion
  6.4 Spatio-Temporal Tendency Reasoning for Human Body Pose and Shape Estimation from Videos
    6.4.1 Introduction and Related Works
    6.4.2 Proposed Method
    6.4.3 Experiments
    6.4.4 Conclusion
  Bibliography
Chapter 7 3D Reconstruction Modeling
  7.1 Replay Attention and Data Augmentation Network for 3D Face and Object Reconstruction
    7.1.1 Introduction
    7.1.2 Related Works
    7.1.3 Proposed Method
    7.1.4 Experiments
    7.1.5 Conclusion
  7.2 A Lightweight Grouped Low-Rank Tensor Approximation Network for 3D Mesh Reconstruction from Videos
    7.2.1 Introduction
    7.2.2 Proposed Method
    7.2.3 Experiments
    7.2.4 Conclusion
  Bibliography

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032