幫助中心 | 我的帳號 | 關於我們

智能機電系統PHM(英文版)(精)

  • 作者:劉輝//成芳//李燕飛
  • 出版社:科學
  • ISBN:9787030825827
  • 出版日期:2025/01/01
  • 裝幀:精裝
  • 頁數:208
人民幣:RMB 168 元      售價:
放入購物車
加入收藏夾

內容大鋼
    機電系統是大部分電氣機械設備的基本功能基礎,機電系統的故障診斷與健康管理(PHM)對整個機械設備的安全運行具有至關重要的意義。本書結合大數據技術在機電系統PHM中的應用,全面介紹了智能機電系統PHM的相關理論、關鍵技術和應用實例。全書分為三篇12章,第一篇從機電系統PHM重要性進行分析,介紹了智能機電系統及其研究現狀和方法,並介紹智能機電系統PHM嵌入大數據的必要性;第二篇以軸承為例介紹機械系統的PHM大數據方法,包括:第2章介紹軸承振動信號的特徵提取方法,第3章介紹軸承剩餘壽命的集成智能預測方法,第4章介紹軸承故障集成智能診斷方法,第5章介紹軸承剩餘壽命的深度預測方法,第6章介紹軸承故障深度診斷方法,第7章介紹將機械系統PHM大數據嵌入方法;第三篇介紹電氣系統的PHM大數據方法,包括:第8章介紹IGBT的剩餘壽命優化預測方法,第9章介紹MOSFET剩餘壽命分解預測方法,第10章介紹電容剩餘壽命的誤差修正預測方法,第11章介紹電源剩餘壽命的濾波修正預測方法,第12章以電源為例介紹電氣系統PHM大數據嵌入方法。各章內容都具有實例分析,幫助讀者深入理解相關內容,激發靈感。

作者介紹
劉輝//成芳//李燕飛

目錄
1  Introduction
  1.1  Overview of Intelligent Electromechanical System
    1.1.1  High-Speed Trains
    1.1.2  Robots
    1.1.3  New Energy Vehicles
  1.2  Research Status of Prognostics and Health Management in Intelligent Electromechanical System
    1.2.1  Fault Diagnosis
    1.2.2  Remaining Useful Life Prediction
  1.3  Methodology of Prognostics and Health Management in Intelligent Electromechanical System
    1.3.1  Feature Extraction Method
    1.3.2  Prediction Model
    1.3.3  Error Modification Model
  1.4  The Necessity of Big Data Embedding in Prognostics and Health Management for Intelligent Electromechanical Systems
  1.5  Scope of the Book
  References
2  Feature Extraction of Bearing Vibration Signal
  2.1  Introduction
  2.2  Data Acquisition
  2.3  Frequency Domain Feature Extraction
    2.3.1  The Theoretical Basis of Continuous Wavelet Transform
    2.3.2  Feature Extraction
    2.3.3  Feature Evaluation
  2.4  Decomposition-Based Feature Extraction
    2.4.1  The Theoretical Basis of Variational Modal Decomposition
    2.4.2  Feature Extraction
    2.4.3  Feature Evaluation
  2.5  Deep Learning Feature Extraction
    2.5.1  The Theoretical Basis of Convolutional Neural Network
    2.5.2  Feature Extraction
    2.5.3  Feature Evaluation
  References
3  Ensemble Intelligent Diagnosis for Bearing Faults
  3.1  Introduction
  3.2  Data Acquisition
  3.3  Ensemble Diagnostic Model Based on Multi-objective Grey Wolf Optimizer for Bearing Faults
    3.3.1  The Theoretical Basis of Empirical Wavelet Transform
    3.3.2  The Theoretical Basis of Random Tree
    3.3.3  The Theoretical Basis of Multi-objective Grey Wolf Optimizer
    3.3.4  Experimental Result and Analysis
  3.4  Boosting Ensemble Diagnostic Model for Bearing Faults
    3.4.1  The Theoretical Basis of Empirical Mode Decomposition
    3.4.2  The Theoretical Basis of Boosting
    3.4.3  The Theoretical Basis of the Osprey-Cauchy-Sparrow Search Algorithm
    3.4.4  Experimental Result and Analysis
  3.5  Model Performance Comparison
  3.6  Conclusions
  References
4  Deep Learning Prediction for Bearing Remaining Useful Life
  4.1  Introduction
  4.2  Data Acquisition

  4.3  BiLSTM-Based Predictive Model for Bearing Remaining Useful Life
    4.3.1  The Theoretical Basis Convolutional Neural Network
    4.3.2  The Theoretical Basis Bidirectional Long Short-Term Memory
    4.3.3  Experimental Result and Analysis
  4.4  GRU-Based Predictive Model for Bearing Remaining Useful Life
    4.4.1  The Theoretical Basis Gate Recurrent Unit
    4.4.2  The Theoretical Basis Attention
    4.4.3  Experimental Result and Analysis
  4.5  Model Performance Comparison
  4.6  Conclusions
  References
5  Optimization Based Prediction for IGBT Remaining Useful Life
  5.1  Introduction
  5.2  Data Acquisition
  5.3  Predictive Model for IGBT Remaining Useful Life Based on Particle Swarm Optimization
    5.3.1  Health Indicator Based on Particle Swarm Optimization
    5.3.2  RUL Prediction Based on the Similarity
  5.4  Predictive Model for IGBT Remaining Useful Life Based on Bat Optimization
  5.5  Model Performance Comparison
  5.6  Application in Front-Wheel Steering Mobile Robot Fault-Tolerant Control
    5.6.1  Front-Wheel Steering Mobile Robot System
    5.6.2  Control Design
    5.6.3  Simulation Results
  5.7  Conclusions
  References
6  Decomposition Based Prediction for MOSFET Remaining Useful Life
  6.1  Introduction
  6.2  Data Acquisition
  6.3  Predictive Model for MOSFET Remaining Useful Life Based on Wavelet Packet Decomposition
    6.3.1  Feature Extraction Based on Wavelet Packet Decomposition
    6.3.2  The Theoretical Basis of Autoregressive Integrated Moving Average Model
    6.3.3  Experimental Result and Analysis
  6.4  Predictive Model for MOSFET Remaining Useful Life Based on Complete Ensemble Empirical Mode Decomposition
    6.4.1  Feature Extraction Based on Complete Ensemble Empirical Mode Decomposition
    6.4.2  The Theoretical Basis of Long Short-Term Memory Model
    6.4.3  Experimental Result and Analysis
  6.5  Model Performance Comparison
  6.6  Applications in Wheeled Mobile Robot Fault-Tolerant Control
    6.6.1  Fault-Tolerant Control
    6.6.2  Applications in Wheeled Mobile Robot
    6.6.3  Performance Analysis
  6.7  Conclusions
  References
7  Linear Networks and Temporal Convolution Based Prediction for Capacitor Remaining Useful Life
  7.1  Introduction
  7.2  Data Acquisition
  7.3  Predictive Model for Capacitor Remaining Useful Life Based on MSD-Mixer
    7.3.1  The Theoretical Basis Linear Network
    7.3.2  The Theoretical Basis of MSD-Mixer
    7.3.3  Experimental Result and Analysis

  7.4  Predictive Model for Capacitor Remaining Useful Life Based on TimesNet
    7.4.1  The Theoretical Basis of Temporal Convolutional Networks
    7.4.2  The Theoretical Basis of TimesNet
    7.4.3  Experimental Result and Analysis
  7.5  Model Performance Comparison
  7.6  Conclusions
  References
8  Remaining Useful Life Prediction of Power Supply Based on Range-Extended New Energy Vehicles
  8.1  Introduction
  8.2  Data Acquisition
  8.3  Predictive Model for Power Supply Remaining Useful Life Based on FEDformer
    8.3.1  The Theoretical Basis of Transformer
    8.3.2  The Theoretical Basis of FEDformer
    8.3.3  Experimental Result and Analysis
  8.4  Predictive Model for Power Supply Remaining Useful Life Based on Preformer
    8.4.1  The Theoretical Basis of Multi-scale Time–Frequency Analysis of Power Batteries
    8.4.2  The Theoretical Basis of Preformer
    8.4.3  Experimental Result and Analysis
  8.5  Model Performance Comparison
  8.6  Conclusions
  References
9  Big Data Embedding in PHM for Electromechanical System
  9.1  Introduction
  9.2  Construction of Big Data Storage Platform
    9.2.1  Data Source and Acquisition
    9.2.2  Data Storage and Management Technology
  9.3  Distributed Predictive Model for Electromechanical System
    9.3.1  Distributed Computing Framework
    9.3.2  Case Study
    9.3.3  Challenges and Analysis
  9.4  Conclusions
  References

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032