幫助中心 | 我的帳號 | 關於我們

機器學習生產系統(影印版)(英文版)

  • 作者:(美)Robert Crowe//Hannes Hapke//Emily Caveness//Di Zhu|責編:張燁
  • 出版社:東南大學
  • ISBN:9787576620054
  • 出版日期:2025/04/01
  • 裝幀:平裝
  • 頁數:445
人民幣:RMB 167 元      售價:
放入購物車
加入收藏夾

內容大鋼
    機器學習(ML)和人工智慧(AI)領域正在蓬勃發展,幾乎每天都有新的研究、模型和技術出現。面對如此豐富的選擇,數據科學家、機器學習工程師和軟體開發人員很容易迷失在將AI/ML模型從實驗階段推向生產的眾多步驟中。
    這本實用書籍專註于生產環境機器學習,指導你將ML模型轉化為可行的產品和應用。生產環境機器學習涵蓋了ML的所有領域,不僅限於簡單的模型訓練。本書特彆強調了ML流水線,幫助你為ML生產系統奠定基礎。
    你即將開啟探索之旅,學習將ML應用投入生產所需的廣泛技術,以及需要考慮的問題和方法。關鍵的ML工程主題包括:
    ·數據收集、驗證、存儲、特徵工程
    ·模型分析、服務、監控、日誌記錄
    ·使用TensorFlow Extended(TFX)和其他工具編排機器學習流水線
    本書提供了深入的實例,包括適用於自然語言處理(NLP)和電腦視覺模型的端到端機器學習流水線。

作者介紹
(美)Robert Crowe//Hannes Hapke//Emily Caveness//Di Zhu|責編:張燁

目錄
Foreword
Preface
1. Introduction to Machine Learning Production Systems
  What Is Production Machine Learning?
  Benefits of Machine Learning Pipelines
  Focus on Developing New Models, Not on Maintaining Existing Models
  Prevention of Bugs
  Creation of Records for Debugging and Reproducing Results
  Standardization
  The Business Case for ML Pipelines
  When to Use Machine Learning Pipelines
  Steps in a Machine Learning Pipeline
  Data Ingestion and Data Versioning
  Data Validation
  Feature Engineering
  Model Training and Model Tuning
  Model Analysis
  Model Deployment
  Looking Ahead
2. Collecting, Labeling, and Validating Data
  Important Considerations in Data Collection
  Responsible Data Collection
  Labeling Data: Data Changes and Drift in Production ML
  Labeling Data: Direct Labeling and Human Labeling
  Validating Data: Detecting Data Issues
  Validating Data: TensorFlow Data Validation
  Skew Detection with TFDV
  Types of Skew
  Example: Spotting Imbalanced Datasets with TensorFlow Data Validation
  Conclusion
3. Feature Engineering and Feature Selection
  Introduction to Feature Engineering
  Preprocessing Operations
  Feature Engineering Techniques
    Normalizing and Standardizing
    Bucketing
    Feature Crosses
    Dimensionality and Embeddings
    Visualization
    Feature Transformation at Scale
    Choose a Framework That Scales Well
    Avoid Training–Serving Skew
    Consider Instance Level Versus Full Pass Transformations
    Using TensorFlow Transform
    Analyzers
    Code Example
  Feature Selection
    Feature Spaces
    Feature Selection Overview
    Filter Methods

    Wrapper Methods
    Embedded Methods
    Feature and Example Selection for LLMs and GenAI
    Example: Using TF Transform to Tokenize Text
    Benefits of Using TF Transform
    Alternatives to TF Transform
    Conclusion
4. Data Journey and Data Storage
  Data Journey
  ML Metadata
  Using a Schema
  Schema Development
  Schema Environments
  Changes Across Datasets
  Enterprise Data Storage
    Feature Stores
    Data Warehouses
    Data Lakes
    Conclusion
5. Advanced Labeling, Augmentation, and Data Preprocessing
  Advanced Labeling
    Semi Supervised Labeling
    Active Learning
    Weak Supervision
    Advanced Labeling Review
  Data Augmentation
    Example: CIFAR 10
    Other Augmentation Techniques
    Data Augmentation Review
  Preprocessing Time Series Data: An Example
    Windowing
    Sampling
    Conclusion
6. Model Resource Management Techniques
  Dimensionality Reduction: Dimensionality Effect on Performance
    Example: Word Embedding Using Keras
    Curse of Dimensionality
    Adding Dimensions Increases Feature Space Volume
    Dimensionality Reduction
  Quantization and Pruning
    Mobile, IoT, Edge, and Similar Use Cases
    Quantization
    Optimizing Your TensorFlow Model with TF Lite
    Optimization Options
    Pruning
  Knowledge Distillation
    Teacher and Student Networks
    Knowledge Distillation Techniques
    TMKD: Distilling Knowledge for a Q&A Task
    Increasing Robustness by Distilling EfficientNets

    Conclusion
7. High-Performance Modeling.
8. Model Analysis.
9. Interpretability
10. Neural Architecture Search
11. Introduction to Model Serving
12. Model Servincl Patterns
13. Model Serving Infrastructure
14. Model Serving Examples
15. Model Manaqement and Delivery
16. Model Monitoring and Logging
17. Privacy and Legal Requirements
18. Orchestrating Machine Learning Pipelines
19. AdvancedTFX
20. ML Pipelines for Computer Vision Problems.
21. ML Pipelines for Natural Language Processing
22. Generative AI
23. The Future of Machine Learning Production Systems and Next Steps
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032