幫助中心 | 我的帳號 | 關於我們

AI工程(影印版)(英文版)

  • 作者:(越)奇普·胡岩|責編:張燁
  • 出版社:東南大學
  • ISBN:9787576620047
  • 出版日期:2025/04/01
  • 裝幀:平裝
  • 頁數:509
人民幣:RMB 189 元      售價:
放入購物車
加入收藏夾

內容大鋼
    基礎模型開啟了眾多全新的AI應用場景,降低了構建AI產品的門檻。這將AI從一門晦澀難懂的學科轉變為一種強大的開發工具,即使是沒有AI經驗的人也能使用。
    在這本通俗易懂的指南中,作者Chip Huyen探討了AI工程的概念:利用現成的基礎模型構建應用的過程。AI應用開發者將學習如何駕馭人工智慧領域,包括模型、數據集、評估基準以及看似無窮無盡的應用模式。書中還介紹了一個用於開發AI應用並高效部署的實用框架。
    理解AI工程的概念及其與傳統機器學習工程的區別。
    學習AI應用的開發過程,了解每個步驟中的挑戰及其解決方法。
    探索各種模型適配技術,包括提示工程、RAG、微調、智能體以及數據集工程,並理解其原理及應用場景。
    分析基礎模型在延遲和成本方面的瓶頸,學習克服這些問題的方法。
    根據需求選擇合適的模型、評估指標、數據、開發模式。

作者介紹
(越)奇普·胡岩|責編:張燁
    奇普·胡岩(Chip Huyen)是實時機器學習平台Claypot AI的聯合創始人。在NVIDIA、Netflix和Snorkel AI工作期間,她幫助多家大型機構開發和部署了機器學習系統。這本書是基於她在斯坦福大學教授的機器學習系統設計課程(CS 239S)撰寫的。

目錄
Preface
1. Introduction to Building AI Applications with Foundation Models
  The Rise of AI Engineering
  From Language Models to Large Language Models
  From Large Language Models to Foundation Models
  From Foundation Models to AI Engineering
  Foundation Model Use Cases
    Coding
    Image and Video Production
    Writing
    Education
    Conversational Bots
    Information Aggregation
    Data Organization
    Workflow Automation
    Planning AI Applications
    Use Case Evaluation
    Setting Expectations
    Milestone Planning
    Maintenance
    The AI Engineering Stack
      Three Layers of the AI Stack
      AI Engineering Versus ML Engineering
      AI Engineering Versus Full Stack Engineering
    Summary
2. Understanding Foundation Models
  Training Data
  Multilingual Models
  Domain Specific Models
  Modeling
    Model Architecture
    Model Size
  Post Training
    Supervised Finetuning
    Preference Finetuning
    Sampling
      Sampling Fundamentals
      Sampling Strategies
      Test Time Compute
      Structured Outputs
      The Probabilistic Nature of AI
    Summary
3. Evaluation Methodology
  Challenges of Evaluating Foundation Models
  Understanding Language Modeling Metrics
    Entropy
    Cross Entropy
    Bits per Character and Bits per Byte
    Perplexity
    Perplexity Interpretation and Use Cases

    Exact Evaluation
    Functional Correctness
    Similarity Measures Against Reference Data
    Introduction to Embedding
    AI as a Judge
      Why AI as a Judge?
      How to Use AI as a Judge
      Limitations of AI as a Judge
      What Models Can Act as Judges?
      Ranking Models with Comparative Evaluation
      Challenges of Comparative Evaluation
      The Future of Comparative Evaluation
    Summary
4. Evaluate AI Systems
  Evaluation Criteria
    Domain Specific Capability
    Generation Capability
    Instruction Following Capability
    Cost and Latency
  Model Selection
    Model Selection Workflow
    Model Build Versus Buy
    Navigate Public Benchmarks
    Design Your Evaluation Pipeline
      Step 1. Evaluate All Components in a System
      Step 2. Create an Evaluation Guideline
      Step 3. Define Evaluation Methods and Data
    Summary
5. Prompt Engineering
  Introduction to Prompting
  In Context Learning: Zero Shot and Few Shot
  System Prompt and User Prompt
  Context Length and Context Efficiency
  Prompt Engineering Best Practices
    Write Clear and Explicit Instructions
    Provide Sufficient Context
    Break Complex Tasks into Simpler Subtasks
    Give the Model Time to Think
    Iterate on Your Prompts
    Evaluate Prompt Engineering Tools
    Organize and Version Prompts
    Defensive Prompt Engineering
    Proprietary Prompts and Reverse Prompt Engineering
    Jailbreaking and Prompt Injection
    Information Extraction
    Defenses Against Prompt Attacks
    Summary
6. RAG and Agents
  RAG
    RAG Architecture

    Retrieval Algorithms
    Retrieval Optimization
    RAG Beyond Texts
  Agents
    Agent Overview
    Tools
    Planning
    Agent Failure Modes and Evaluation
    Memory
    Summary
7. Finetuning
  Finetuning Overview
  When to Finetune
  Reasons to Finetune
  Reasons Not to Finetune
  Finetuning and RAG
  Memory Bottlenecks
  Backpropagation and Trainable Parameters
  Memory Math
  Numerical Representations
  Quantization
  Finetuning Techniques
  Parameter Efficient Finetuning
  Model Merging and Multi Task Finetuning
  Finetuning Tactics
  Summary
8. Dataset Engineering
  Data Curation
  Data Quality
  Data Coverage
  Data Quantity
  Data Acquisition and Annotation
  Data Augmentation and Synthesis
    Why Data Synthesis
    Traditional Data Synthesis Techniques
    AI Powered Data Synthesis
  Model Distillation
  Data Processing
    Inspect Data
    Deduplicate Data
    Clean and Filter Data
    Format Data
  Summary
9. Inference Optimization
  Understanding Inference Optimization
  Inference Overview
  Inference Performance Metrics
  AI Accelerators
  Inference Optimization
    Model Optimization

    Inference Service Optimization
  Summary
10. AI Engineering Architecture and User Feedback
  AI Engineering Architecture
    Step 1. Enhance Context
    Step 2. Put in Guardrails
    Step 3. Add Model Router and Gateway
    Step 4. Reduce Latency with Caches
    Step 5. Add Agent Patterns
    Monitoring and Observability
    AI Pipeline Orchestration
  User Feedback
    Extracting Conversational Feedback
    Feedback Design
    Feedback Limitations
  Summary
Epilogue
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032