幫助中心 | 我的帳號 | 關於我們

融合數字電路與存內計算的高能效神經網路處理器(英文版)(精)/清華大學優秀博士學位論文叢書

  • 作者:岳金山|責編:戚亞
  • 出版社:清華大學
  • ISBN:9787302656005
  • 出版日期:2024/08/01
  • 裝幀:精裝
  • 頁數:118
人民幣:RMB 89 元      售價:
放入購物車
加入收藏夾

內容大鋼
    神經網路演算法在諸多領域具有廣泛應用,本書針對神經網路在低功耗智能設備上實際應用中遇到的關鍵挑戰,研究了融合數字電路與存內計算的高能效神經網路處理器。
    本書創新成果包括:①提出了一種基於特定卷積核的數據復用架構,提升了能量效率;②針對不規則稀疏的額外硬體開銷,設計了頻域神經網路處理器,支持高效FFT計算和頻域二維數據復用;③提出了一種存內計算系統架構,支持分塊結構化稀疏、數據復用與ADC動態關斷;④針對現有存內計算晶元難以支持大規模網路的挑戰,提出了組相聯稀疏存內計算架構,支持乒乓權重更新,並進行了流片驗證。
    本書展示了融合數字電路與存內計算的技術路線。證明充分利用數字電路與存內計算的優勢,結合器件、電路、架構和演算法應用等多層次聯合優化能夠實現更高能效。

作者介紹
岳金山|責編:戚亞

目錄
1  Introduction
  1.1  Research Background and Significance
    1.1.1  Development Trends of Neural Network
    1.1.2  Requirements of NN Processor
    1.1.3  Energy-Efficient NN Processors
  1.2  Summary of the Research Work
    1.2.1  Overall Framework of the Research Work
    1.2.2  Main Contributions of This Book
  1.3  Overall Structure of This Book
  References
2  Basics and Research Status of Neural Network Processors
  2.1  Basics of Neural Network Algorithms
  2.2  Basics of Neural Network Processors
  2.3  Research Status of Digital-Circuits-Based NN Processors
    2.3.1  Data Reuse
    2.3.2  Low-Bit Quantization
    2.3.3  NN Model Compression and Sparsity
    2.3.4  Summary of Digital-Circuits-Based NN Processors
  2.4  Research Status of CIM NN Processors
    2.4.1  CIM Principle
    2.4.2  CIM Devices
    2.4.3  CIM Circuits
    2.4.4  CIM Macro
    2.4.5  Summary of CIM NN Processors
  2.5  Summary of This Chapter
  References
3  Energy-Efficient NN Processor by Optimizing Data Reuse for Specific Convolutional Kernels
  3.1  Introduction
  3.2  Previous Data Reuse Methods and the Constraints
  3.3  The KOP3 Processor Optimized for Specific Convolutional Kernels
  3.4  Processing Array Optimized for Specific Convolutional Kernels
  3.5  Local Memory Cyclic Access Architecture and Scheduling Strategy
  3.6  Module-Level Parallel Instruction Set and the Control Circuits
  3.7  Experimental Results
  3.8  Conclusion
  References
4  Optimized Neural Network Processor Based on Frequency-Domain Compression Algorithm
  4.1  Introduction
  4.2  The Limitations of Irregular Sparse Optimization and CirCNN Frequency-Domain Compression Algorithm
  4.3  Frequency-Domain NN Processor STICKER-T
  4.4  Global-Parallel Bit-Serial FFT Circuits
  4.5  Frequency-Domain 2D Data-Reuse MAC Array
  4.6  Small-Area Low-Power Block-Wise TRAM
  4.7  Chip Measurement Results and Comparison
  4.8  Summary of This Chapter
  References
5  Digital Circuits and CIM Integrated NN Processor
  5.1  Introduction
  5.2  The Advantage of CIM Over Pure Digital Circuits
  5.3  Design Challenges for System-Level CIM Chips

  5.4  Sparse CIM Processor STICKER-IM
  5.5  Structural Block-Wise Weight Sparsity and Dynamic Activation Sparsity
  5.6  Flexible Mapping and Scheduling and Intra/Inter-Macro Data Reuse
  5.7  Energy-Efficient CIM Macro with Dynamic ADC Power-Off
  5.8  Chip Measurement Results and Comparison
  5.9  Summary of This Chapter
  References
6  A 「Digital+CIM」 Processor Supporting Large-Scale NN Models
  6.1  Introduction
  6.2  The Challenges of System-Level CIM Chips to Support Large-Scale NN Models
  6.3  「Digital+CIM」 NN Processor STICKER-IM
  6.4  Set-Associate Block-Wise Sparse Zero-Skipping Circuits
  6.5  Ping-Pong CIM and Weight Update Architecture
  6.6  Ping-Pong CIM Macro with Dynamic ADC Precision
  6.7  Chip Measurement Results and Comparison
  6.8  Summary of This Chapter
  References
7  Summary and Prospect
  7.1  Summary of This Book
  7.2  Prospect of This Book

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032