幫助中心 | 我的帳號 | 關於我們

數據驅動的信息物理系統(英文版)

  • 作者:李方昱//伍小龍//韓紅桂|責編:孫亞楠
  • 出版社:清華大學
  • ISBN:9787302669388
  • 出版日期:2024/08/01
  • 裝幀:平裝
  • 頁數:354
人民幣:RMB 139 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書聚焦于數據驅動物理信息系統(CPS)的原則、設計和實現,涵蓋數據採集、分析和建模、機器學習和人工智慧、網路與分散式計算及網路安全等,全面介紹了開發數據驅動信息物理系統的最先進技術和方法,以及在製造業、醫療保健、交通運輸和能源等各個行業中的應用。
    本書可供信息物理系統設計和開發領域的研究人員閱讀參考。

作者介紹
李方昱//伍小龍//韓紅桂|責編:孫亞楠

目錄
Chapter 1  Introduction to Data-driven Cyber Physical Systems
  1.1  What are cyber physical systems?
  1.2  Data-driven approaches for CPS
  1.3  Importance of DDCPS
  1.4  Key challenges in DDCPS
  1.5  Applications of DDCPS
  1.6  Evolution of data-driven approaches in cyber physical systems
  1.7  How can data be used to improve cyber physical systems?
  1.8  Overview of the book
  References
Chapter 2  Fundamentals of Data-driven Cyber Physical Systems
  2.1  Definitions
    2.1.1  Definitions of CPS
    2.1.2  Definitions of DDCPS
  2.2  Characteristics of DDCPS
    2.2.1  Networked communication
    2.2.2  Scalability
    2.2.3  Heterogeneity
    2.2.4  Interdisciplinary
    2.2.5  Real-time processing
    2.2.6  Real-time decision-making
  2.3  Components of DDCPS
    2.3.1  Sensing components
    2.3.2  Computational components
    2.3.3  Communication components
    2.3.4  Control components
  2.4  Examples of DDCPS in different industries
    2.4.1  Smart grids
    2.4.2  Agriculture
    2.4.3  Healthcare
    2.4.4  Intelligent transportation
    2.4.5  Smart manufacturing
  2.5  Challenges of DDCPS
    2.5.1  Data storage
    2.5.2  Integration
    2.5.3  Communication
    2.5.4  Cybersecurity
    2.5.5  System stability
  2.6  Summary
  References
Chapter 3  Data Collection in Cyber Physical Systems
  3.1  Sensors and auxiliary components
    3.1.1  Type of sensor and auxiliary components
    3.1.2  Factors for selecting sensors and auxiliary components
    3.1.3  Typical scenarios for data collection
  3.2  Types of data
    3.2.1  One dimensional data
    3.2.2  Image and video data
    3.2.3  Other types of data
  3.3  Real time and latency

    3.3.1  Techniques for reducing latency
    3.3.2  Key considerations of real time and latency
    3.3.3  Evaluating the performance
  3.4  Data quality and reliability issues
    3.4.1  Data preprocessing techniques
    3.4.2  Impact of data redundancy on reliability
    3.4.3  Data validation techniques
  3.5  Summary
  References
Chapter 4  Data Storage and Management in Cyber Physical Systems
  4.1  Types of data storage for DDCPS
    4.1.1  An introduction to data storage in DDCPS
    4.1.2  Explore data storage instances in the system
  4.2  Data management and processing techniques
    4.2.1  Database management techniques
    4.2.2  Data processing techniques
  4.3  Big data processing technology of DDCPS
    4.3.1  Data process for storage and management
    4.3.2  Storage for DDCPS
    4.3.3  Management for DDCPS
    4.3.4  Big data for DDCPS
  4.4  Summary
  References
Chapter 5  Data Integration and Fusion in Cyber Physical Systems
  5.1  Data integration and fusion
    5.1.1  CPS data characteristics
    5.1.2  CPS data integration
    5.1.3  CPS data fusion
    5.1.4  Data integration and fusion framework
    5.1.5  Data representation
  5.2  Techniques for fusing data from multiple sources
    5.2.1  Stage-based data fusion methods
    5.2.2  Semantic meaning-based data fusion
    5.2.3  Artificial intelligence-based data fusion
  5.3  CPS data integration and fusion case studies
    5.3.1  Cloud-integrated CPS for smart cities case study
    5.3.2  Data fusion framework for smart healthcare case study
  5.4  Challenges and future work opportunities
    5.4.1  Integrated models challenges
    5.4.2  CPS data fusion challenges
    5.4.3  Future work opportunities
  5.5  Summary
  References
Chapter 6  Data-driven Modeling and Simulation in Cyber Physical Systems - ~
  6.1  Importance of modeling and simulation in cyber physical systems
    6.1.1  Importance of complex system modeling for CPS
    6.1.2  Importance of complex system simulation for CPS
    6.1.3  Benefits of modeling and simulation in CPS
  6.2  Data-driven modeling techniques
    6.2.1  Introduction to data-driven modeling

    6.2.2  Types of data-driven models used in CPS
    6.2.3  Methods for model selection and validation
    6.2.4  Examples of data-driven modeling in CPS applications
  6.3  Simulation and testing of cyber physical systems using data-driven models
    6.3.1  Introduction to data-driven simulation
    6.3.2  Types of data-driven simulation used in CPS
    6.3.3  Model validation and uncertainty quantification
    6.3.4  Case studies of simulation and testing using data-driven models in CPS applications
  6.4  Summary
  References
Chapter 7  Fault Detection and Predictive Maintenance in Cyber Physical Systems
  7.1  An overview of fault detection and maintenance
    7.1.1  The development of CPS fault detection
    7.1.2  The development of CPS maintenance
    7.1.3  Future trends of fault detection and predictive maintenance
  7.2  Data-driven approaches for fault detection and predictive maintenance
    7.2.1  Data-driven fault detection approaches
    7.2.2  Data-driven predictive maintenance approaches
    7.2.3  Discussion of fault detection and predictive maintenance
  7.3  Applications of fault detection and predictive maintenance
    7.3.1  Application background of fault detection and predictive maintenance
    7.3.2  Case studies of fault detection and predictive maintenance
    7.3.3  Challenges in cases
  7.4  Summary
  References
Chapter 8  Cyberseeurity in Data-driven Cyber Physical System
  8.1  Cyber attacks in data-driven CPS
    8.1.1  Attacks at the perception layer
    8.1.2  Attacks at the transmission layer
    8.1.3  Attacks at the platform layer
    8.1.4  Attacks at the application layer
  8.2  Requirements of cybersecurity
    8.2.1  Objective of cybersecurity
    8.2.2  Hardware security
    8.2.3  Software security
    8.2.4  Network security
    8.2.5  Data security
  8.3  Importance of cybersecurity in data-driven CPS
    8.3.1  Data integrity and accuracy
    8.3.2  Privacy and confidentiality
    8.3.3  System resilience and availability
    8.3.4  Regulatory requirements
  8.4  Challenges of cybersecurity in data-driven CPS
    8.4.1  Data-driven techniques for attack detection and mitigation
    8.4.2  Data trustworthiness and policy-based sharing
    8.4.3  Risk-based security metrics
  8.5  Data-driven techniques of cybersecurity in CPS
    8.5.1  Data-driven attack detection and migitation
    8.5.2  Data-driven data confidence assessment
    8.5.3  Risk assessment metrics

  8.6  Summary
  References
Chapter 9  Future of Data-driven Cyber Physical Systems
  9.1  Potential impacts
  9.2  Emerging trends and technologies in DDCPS
  9.3  Societal and ethical implications
  9.4  Concluding remarks
Acknowledgements

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032