幫助中心 | 我的帳號 | 關於我們

鋰離子電池均衡控制(英文版)(精)/節能與新能源汽車關鍵技術研究叢書

  • 作者:陳劍//歐陽權//王志勝|責編:杜筱娜
  • 出版社:華中科技大學
  • ISBN:9787577209418
  • 出版日期:2024/06/01
  • 裝幀:精裝
  • 頁數:182
人民幣:RMB 158 元      售價:
放入購物車
加入收藏夾

內容大鋼
    鋰離子電池是市場上使用最廣泛的電池。其主要用途包括動力電池和儲能電池。在實際應用中,通常會串聯足夠多的電池以滿足高電壓需求,但電池組中的每個電池都不同,這會影響整個電池組的性能和壽命。如今,為了避免電池組中的不一致性,將採用電池均衡方法。本書為節能與新能源汽車關鍵技術研究叢書之一,全書以英文系統全面介紹了鋰離子電池均衡控制技術。

作者介紹
陳劍//歐陽權//王志勝|責編:杜筱娜

目錄
1  Introduction
  1.1  Applications of Lithium-Ion Batteries
    1.1.1  The Crucial Role of Batteries
    1.1.2  Comparisons of Different Batteries
  1.2  Battery Inconsistency Phenomenon
  1.3  Crucial Role of Cell Equalization
    1.3.1  Voltage-Based Equalization
    1.3.2  SOC-Based Equalization
  References
2  Overview of Cell Equalization Systems
  2.1  Classification and Comparisons of Cell Equalization Systems
    2.1.1  Passive Cell Equalization Systems
    2.1.2  Active Cell Equalization Systems
    2.1.3  Comparisons of Cell Equalization Systems
  2.2  Commercial Equalizers
    2.2.1  Bidirectional Buck-Boost Converters
    2.2.2  Bidirectional Modified C?k Converters
  2.3  Overview of Equalization Algorithms
    2.3.1  Cell-to-Cell Equalization Algorithms
    2.3.2  Cell-to-Pack-to-Cell Equalization Algorithms
    2.3.3  Charging Equalization Algorithms
  References
3  Active Cell Equalization Topology
  3.1  Commonly Used Active Cell Equalization Topology
    3.1.1  Adjacent-Based Topology
    3.1.2  Non-adjacent-Based Topology
    3.1.3  Direct Cell-Cell Topology
    3.1.4  Mixed Topology
  3.2  Active Cell Equalization Topology Comparison
  3.2.1 Performance Comparison
  3.2.2 Economic Comparison
  3.2.3  Discussions
  References
4  Optimal Active Cell Equalizing Topology Design
  4.1  Cell Equalizing System
    4.1.1  Equalizing System Model
    4.1.2  Consensus-Based Cell Equalizing Algorithm Design
  4.2  Design of the Optimal Equalizing Topology
    4.2.1  Equalizing Time
    4.2.2  Traditional Cell Equalizing Topology
    4.2.3  Position Identification of the Added ICEs for Reducing the Equalizing Time
  4.3  Simulation Results
  4.4  Experimental Results
  References
5  Neural Network-Based SOC Observer Design for Batteries
  5.1  Battery Model
  5.2  RBF Neural Network Observer
    5.2.1  Neural Network Based Nonlinear Observer Design
    5.2.2  Convergence Analysis
  5.3  Experiments and Simulations

    5.3.1  Experiment for Parameter Extraction
    5.3.2  Experiment for SOC Estimation
  References
6  Active Cell-to-Cell Equalization Control
  6.1  Cell Equalizing System Model
    6.1.1  Battery Cell Model
    6.1.2  Bidirectional Modified C?k Converter Model
    6.1.3  Cell Equalizing System Model
  6.2  Objective and Constraints of the Cell Equalizing Process
    6.2.1  Cell Equalizing Objective
    6.2.2  Cell Equalizing Constraints
  6.3  SOC Estimation Based Quasi-Sliding Mode Control for Cell Equalization
    6.3.1  Adaptive Quasi-Sliding Mode Observer Design for Cells' SOC Estimation
    6.3.2  Quasi-Sliding Mode-Based Cell Equalizing Control
  6.4  Experiments
    6.4.1  Experimental Setup
    6.4.2  Experimental Results
  References
7  Module-Based Cell-to-Cell Equalization Control
  7.1  Module-Based Cell-to-Cell Equalization Systems
    7.1.1  Equalizing Currents
    7.1.2  Cell Equalizing System Model
    7.1.3  Cell Equalizing Constraints
  7.2  Hierarchical Optimal Control Strategy
    7.2.1  Cell Equalizing Task Formulation
    7.2.2  Top Layer:Module-Level Equalizing Control
    7.2.3  Bottom Layer:Cell-Level Equalizing Control
  7.3  Results and Discussions
    7.3.1  Cell Equalizing Results
    7.3.2  Tests of Different Weight Selections
    7.3.3  Comparison With Decentralized Equalizing Control
    7.3.4  Tests for Different Cells』 Initial SOCs
  References
8  Module-Based Cell-to-Pack Equalization Control
  8.1  Improved Module-Based CPC Equalization System
    8.1.1  Equalizing Current Formulation
    8.1.2  Improved Module-Based CPC Equalization System Model
  8.2  Two-Layer Model Predictive Control Strategy
    8.2.1  Cost Function Formulation
    8.2.2  Constraints
    8.2.3  Centralized MPC Design
  8.3  Two-Layer MPC for Cell Equalization
    8.3.1  Top-layer MPC:ML Equalizing Current Control
    8.3.2  Bottom-Layer MPC:CMC Equalizing Current Control
    8.3.3  Computational Complexity Comparison With Centralized MPC
  8.4  Results and Discussions
    8.4.1  Equalization Results
    8.4.2  Comparison With the Centralized MPC
    8.4.3  Comparison With a Commercial CPC-Based Equalization Structure
    8.4.4  Tests of Different Cells' Initial SOC Vectors

  References
9  Optimal Hierarchical Charging Equalization for Battery Packs
  9.1  Charging System Model
    9.1.1  Battery Pack Model
    9.1.2  Multi-module Charger Modeling
    9.1.3  Charging System Modeling
  9.2  Hierarchical Control for the Charging Equalization System
    9.2.1  Charging Equalization Objectives
    9.2.2  Charging Constraints
    9.2.3  Top-Layer Control:Optimal Charging Current Scheduling
    9.2.4  Bottom-Layer Control:Charging Current Tracking
  9.3  Simulation and Experimental Results
    9.3.1  Simulation Results
    9.3.2  Experimental Results
  References
10  Simultaneous Charging Equalization Strategy for Battery Packs
  10.1  Charging Model
    10.1.1  Battery Pack Modeling
    10.1.2  Charging Objective
    10.1.3  Charging Constraints
  10.2  Simultaneous Charging Development
  10.3  Simulation and Experimental Results
    10.3.1  Simulation Results
    10.3.2  Experimental Results
  References

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032