幫助中心 | 我的帳號 | 關於我們

面向高風險應用的機器學習(影印版)(英文版)

  • 作者:(美)帕特里克·霍爾//詹姆士·柯蒂斯//帕魯爾·潘迪|責編:張燁
  • 出版社:東南大學
  • ISBN:9787576612912
  • 出版日期:2024/03/01
  • 裝幀:平裝
  • 頁數:438
人民幣:RMB 138 元      售價:
放入購物車
加入收藏夾

內容大鋼
    過去十年人們見證了人工智慧和機器學習(AI/ML)技術的廣泛應用。然而,由於在廣泛實施過程中缺乏監督,導致了一些本可以通過適當的風險管理來避免的事故和有害後果。在我們認識到AI/ML的真正好處之前,從業者必須了解如何降低其風險。
    本書描述了負責任的AI方法,這是一種以風險管理、網路安全、數據隱私、應用社會科學方面的最佳實踐為基礎,用於改進AI/ML技術、業務流程、文化能力的綜合性框架。作者Patrick Hall、James Curtis、Parul Pandey為那些希望幫助組織、消費者和公眾改善實際AI/ML系統成果的數據科學家創作了這本指南。

作者介紹
(美)帕特里克·霍爾//詹姆士·柯蒂斯//帕魯爾·潘迪|責編:張燁

目錄
Foreword
Preface
Part Ⅰ. Theories and Practical Applications of AI Risk Management
  1.Contemporary Machine Learning Risk Management
    A Snapshot of the Legal and Regulatory Landscape
       The Proposed EU AI Act
       US Federal Laws and Regulations
       State and Municipal Laws
       Basic Product Liability
       Federal Trade Commission Enforcement
     Authoritative Best Practices
     AI Incidents
     Cultural Competencies for Machine Learning Risk Management
       Organizational Accountability
       Culture of Effective Challenge
       Diverse and Experienced Teams
       Drinking Our Own Champagne
       Moving Fast and Breaking Things
     Organizational Processes for Machine Learning Risk Management
       Forecasting Failure Modes
       Model Risk Management Processes
       Beyond Model Risk Management
     Case Study: The Rise and Fall of Zillow's iBuying ~
       Fallout
      Lessons Learned
    Resources
  2.Interpretable and Explainable Machine Learning
   Important Ideas for Interpretability and Explainability
   Explainable Models
      Additive Models
      Decision Trees
      An Ecosystem of Explainable Machine Learning Models
   Post Hoc Explanation
      Feature Attribution and Importance
      Surrogate Models
      Plots of Model Performance
      Cluster Profiling
   Stubborn Difficulties of Post Hoc Explanation in Practice
   Pairing Explainable Models and Post Hoc Explanation
   Case Study: Graded by Algorithm
   Resources
  3.Debugging Machine Learning Systems for Safety and Performance
   Training
      Reproducibility
      Data Quality
      Model Specification for Real-World Outcomes
   Model Debugging
      Software Testing
      Traditional Model Assessment
      Common Machine Learning Bugs

      Residual Analysis
      Sensitivity Analysis
      Benchmark Models
      Remediation: Fixing Bugs
   Deployment
     Domain Safety
     Model Monitoring
   Case Study: Death by Autonomous Vehicle
     Fallout
     An Unprepared Legal System
     Lessons Learned
   Resources
……
  4.Managing Bias in Machine Learning
  5.Security for Machine Learning
Part Ⅱ.Putting AI Risk Management into Action
  6.Explainable Boosting Machines and Explaining XGBoost
  7.Explaining a PyTorch Image Classifier
  8.Selecting and Debugging XGBoost Models
  9.Debugging a PyTorch Image Classifier
  10.Testing and Remediating Bias with XGBoost
  11.Red-Teaming XGBoost
Part Ⅲ.Conclusion
  12.How to Succeed in High-Risk Machine Learning

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032