目錄
Acknowledgments
List of Acronyms
CHAPTER 1 Introduction: 5G Radio Access
1.1 Evolution of Mobile Communication
1.2 5G New Radio Access Technology
1.3 5G NR Global View
1.3.1 5G Standardization
1.3.2 Spectrum for 5G
1.3.3 Use Cases for 5G
1.3.4 5G Field Trials
1.3.5 5G Commercial Deployments
1.4 Preview of the Book
References
CHAPTER 2 NR Physical Layer: Overview
2.1 Radio Protocol Architecture
2.2 NR PHY: Key Technology Components
2.2.1 Modulation
2.2.2 Waveform
2.2.3 Multiple Antennas
2.2.4 Channel Coding
2.3 Physical Time-Frequency Resources
2.4 Physical Channels
2.5 Physical Signals
2.6 Duplexing Scheme
2.7 Frame Structure
2.8 PHY Procedures and Measurements
2.9 Physical Layer Challenges
2.9.1 Propagation Related Challenges
2.9.2 Hardware Related Challenges
References
CHAPTER 3 Propagation & Channel Modeling
3.1 Propagation Fundamentals
3.1.1 Electromagnetic Waves
3.1.2 Free-Space Propagation
3.1.3 Scattering and Absorption
3.2 Propagation Channel Characterization
3.2.1 Frequency-Delay Domain
3.2.2 Doppler-Time Domain
3.2.3 Directional Domain
3.3 Experimental Channel Characteristics
3.3.1 Measurement Techniques
3.3.2 Analysis Methods
3.3.3 Transmission Loss Measurements
3.3.4 Delay Domain Measurements
3.3.5 Directional Domain Measurements
3.4 Channel Modeling
3.4.1 5G Stochastic Channel Models
3.4.2 Geometry-Based Modeling
3.5 Summary and Future Work
References
CHAPTER 4 Mathematical Modeling of Hardware Impairments
4.1 RF Power Amplifiers
4.1.1 The Volterra Series
4.1.2 Common Subsets of the Volterra Series
4.1.3 Global vs. Local Basis Functions
4.1.4 Experimental Model Validation
4.1.5 Mutually Orthogonal Basis Functions
4.1.6 Multi-Antenna Environments and Mutual Coupling
4.2 Oscillator Phase Noise
4.2.1 Phase-Noise Power Spectrum and Leeson's Equation
4.2.2 Phase-Noise Modeling: Free-Running Oscillator
4.2.3 Phase-Noise Modeling: Phase-Locked Loop
4.3 Data Converters
4.3.1 Modeling of Quantization Noise
4.4 Statistical Modeling
4.4.1 The Bussgang Theorem and the System Model
4.5 Stochastic Modeling of Power Amplifiers
4.6 Oscillator Phase Noise
4.7 Stochastic Modeling of Data Converters
4.8 Model Concatenation and Simulations
4.8.1 Signal-to-Interference and Noise Ratio
4.8.2 Simulations
4.8.3 Simulation Results
References
CHAPTER 5 Multicarrier Waveforms
5.1 Multicarrier Waveforms
5.1.1 The Principle of Orthogonality
5.1.2 OFDM-Based Waveforms
5.1.3 Filter Bank-Based Waveforms
5.2 Single Carrier DFTS-OFDM
5.3 Waveform Design Requirements for 5G NR
5.4 Key Performance Indicator for NR Waveform Design
5.5 Waveform Comparison for NR
5.5.1 Frequency Localization
5.5.2 Power Efficiency
5.5.3 Time-Varying Fading Channel
5.5.4 Baseband Complexity
5.5.5 Phase-Noise Robustness Comparison
References
CHAPTER 6 NR Waveform
6.1 Suitability of OFDM for NR
6.2 Scalable OFDM for NR
6.2.1 Why 15 kHz as Baseline Numerology
6.2.2 Why 15 x2" kHz Scaling
6.3 OFDM Numerology Implementation
6.3.1 Phase Noise
6.3.2 Cell Size, Service Latency, and Mobility
6.3.3 Multiplexing Services
6.3.4 Spectral Confinement
6.3.5 Guard Band Considerations
6.3.6 Implementation Aspects
6.4 Improving Power Efficiency of NR Waveform
6.4.1 Techniques With Distortion
6.4.2 Distortion-less Techniques
6.5 Effects of Synchronization Errors
6.5.1 Effect of Timing Offset
6.5.2 Effect of Carrier Frequency Offset
6.5.3 Sampling Frequency Offset
6.6 Impairment Mitigation
6.6.1 A Phase-Noise Mitigation Scheme
6.6.2 CFO and SFO Mitigation
References
CHAPTER 7 Multiantenna Techniques
7.1 The Role of Multiantenna Techniques in NR
7.1.1 Low Frequencies
7.1.2 High Frequencies
7.2 Multiantenna Fundamentals
7.2.1 Beam-Forming, Precoding, and Diversity
7.2.2 Spatial Multiplexing
7.2.3 Antenna Array Architectures
7.2.4 UE Antennas
7.2.5 Antenna Ports and ocI
7.2.6 CSI Acquisition
7.2.7 Massive MIMO
7.3 Multiantenna Techniques in NR
7.3.1 CSI Acquisition
7.3.2 Downlink MIMO Transmission
7.3.3 Uplink MIMO Transmission
7.3.4 Beam Management
7.4 Experimental Results
7.4.1 Beam-Forming Gain
7.4.2 Beam Tracking
7.4.3 System Simulations
References
CHAPTER 8 Channel Coding
8.1 Fundamental Limits of Forward Error Correction
8.1.1 The Binary AWGN Channel
8.1.2 Coding Schemes for the Binary-AWGN Channels
8.1.3 Performance Metrics
8.2 FEC Schemes for the Bi-AWGN Channel
8.2.1 Introduction
8.2.2 Some Definitions
8.2.3 LDPC Codes
8.2.4 Polar Codes
8.2.5 Other Coding Schemes for the Short-Blocklength Regime
8.3 Coding Schemes for Fading Channels
8.3.1 The SISO Case
8.3.2 The MIMO Case
References
CHAPTER 9 Simulator
9.1 Simulator Overview
9.2 Functional Modules
9.2.1 Channel Model
9.2.2 Power Amplifer Model
9.2.3 Phase-Noise Model
9.2.4 Synchronization
9.2.5 Channel Estimation and Equalization
9.3 Waveforms
9.3.1 CP-OFDM
9.3.2 w-OFDM
9.3.3 UF-OFDM
9.3.4 FBMC-OQAM
9.3.5 FBMC-QAM
9.4 Simulation Exercises
9.4.1 Spectral Regrowth
9.4.2 Impairment of CFO
9.4.3 Impairment of PN
9.4.4 Impairment of Fading Channel
References
Index