幫助中心 | 我的帳號 | 關於我們

Transformers自然語言處理(修訂版影印版)(英文版)

  • 作者:(澳大利亞)劉易斯·湯斯頓//(瑞士)雷安德羅·v.韋拉//(法國)托馬斯·沃夫|責編:張燁
  • 出版社:東南大學
  • ISBN:9787576605891
  • 出版日期:2023/03/01
  • 裝幀:平裝
  • 頁數:383
人民幣:RMB 119 元      售價:
放入購物車
加入收藏夾

內容大鋼
    自2017年推出以來,transformers已迅速成為在各種自然語言處理任務中實現最佳結果的主導架構。如果你是一名數據科學家或程序員,這本實踐用書將向你展示如何使用Hugging Face Transformers(基於Python的深度學習庫)訓練和擴展這些大型模型。
    Transformers已經被用來撰寫真實的新聞故事、改進Google搜索查詢,甚至創建會講老套笑話的聊天機器人。在這本指南中,作者Lewis Tunstall、Leandro von Werra、Thomas Wolf(Hugging Face Transformers的創建者)通過實踐方法來教你如何使用transformers以及如何將它集成到你的應用中。你將快速學習可以由transformers幫助解決的各種任務。
    為核心NLP任務構建、調試和優化transformers模型,例如文本分類、命名實體識別和問答;
    學習如何使用transformers進行跨語言遷移學習;
    在缺乏標記數據的實際場景中應用transformers;
    使用提取、修剪和量化等技術高效部署transformers模型;
    從頭開始訓練transformers並學習如何擴展到多個GPU和分散式環境。

作者介紹
(澳大利亞)劉易斯·湯斯頓//(瑞士)雷安德羅·v.韋拉//(法國)托馬斯·沃夫|責編:張燁

目錄
Foreword
Preface
1. Hello Transformers
  The Encoder-Decoder Framework
  Attention Mechanisms
  Transfer Learning in NLP
  Hugging Face Transformers: Bridging the Gap
  A Tour of Transformer Applications
    Text Classification
    Named Entity Recognition
    Question Answering
    Summarization
    Translation
    Text Generation
  The Hugging Face Ecosystem
    The Hugging Face Hub
    Hugging Face Tokenizers
    Hugging Face Datasets
    Hugging Face Accelerate
  Main Challenges with Transformers
  Conclusion
2. Text Classification
  The Dataset
    A First Look at Hugging Face Datasets
    From Datasets to DataFrames
    Looking at the Class Distribution
    How Long Are Our Tweets?
  From Text to Tokens
    Character Tokenization
    Word Tokenization
    Subword Tokenization
    Tokenizing the Whole Dataset
  Training a Text Classifier
    Transformers as Feature Extractors
    Fine-Tuning Transformers
  Conclusion
3. Transformer Anatomy
  The Transformer Architecture
  The Encoder
    Self-Attention
    The Feed-Forward Layer
    Adding Layer Normalization
    Positional Embeddings
    Adding a Classification Head
  The Decoder
  Meet the Transformers
    The Transformer Tree of Life
    The Encoder Branch
    The Decoder Branch
    The Encoder-Decoder Branch

  Conclusion
4. Multilingual Named Entity Recognition
  The Dataset
  Multilingual Transformers
  A Closer Look at Tokenization
    The Tokenizer Pipeline
    The SentencePiece Tokenizer
  Transformers for Named Entity Recognition
  The Anatomy of the Transformers Model Class
    Bodies and Heads
    Creating a Custom Model for Token Classification
    Loading a Custom Model
  Tokenizing Texts for NER
  Performance Measures
  Fine-Tuning XLM-RoBERTa
  Error Analysis
  Cross-Lingual Transfer
    When Does Zero-Shot Transfer Make Sense?
    Fine-Tuning on Multiple Languages at Once
  Interacting with Model Widgets
  Conclusion
5. Text Generation
  The Challenge with Generating Coherent Text
  Greedy Search Decoding
  Beam Search Decoding
  Sampling Methods
  Top-k and Nucleus Sampling
  Which Decoding Method Is Best?
  Conclusion
6. Summarization
  The CNN/DailyMail Dataset
  Text Summarization Pipelines
    Summarization Baseline
    GPT-2
    T5
    BART
    PEGASUS
  Comparing Different Summaries
  Measuring the Quality of Generated Text
    BLEU
    ROUGE
  Evaluating PEGASUS on the CNN/DailyMail Dataset
  Training a Summarization Model
    Evaluating PEGASUS on SAMSum
    Fine-Tuning PEGASUS
    Generating Dialogue Summaries
   Conclusion
7. Question Answering
  Building a Review-Based QA System
    The Dataset

    Extracting Answers from Text
    Using Haystack to Build a QA Pipeline
  Improving Our QA Pipeline
    Evaluating the Retriever
    Evaluating the Reader
    Domain Adaptation
    Evaluating the Whole QA Pipeline
  Going Beyond Extractive QA
  Conclusion
8. Making Transformers Efficient in Production
  Intent Detection as a Case Study
  Creating a Performance Benchmark
  Making Models Smaller via Knowledge Distillation
    Knowledge Distillation for Fine-Tuning
    Knowledge Distillation for Pretraining
    Creating a Knowledge Distillation Trainer
    Choosing a Good Student Initialization
    Finding Good Hyperparameters with Optuna
    Benchmarking Our Distilled Model
  Making Models Faster with Quantization
  Benchmarking Our Quantized Model
  Optimizing Inference with ONNX and the ONNX Runtime
  Making Models Sparser with Weight Pruning
    Sparsity in Deep Neural Networks
    Weight Pruning Methods
  Conclusion
9. Dealing with Few to No Labels
  Building a GitHub Issues Tagger
    Getting the Data
    Preparing the Data
    Creating Training Sets
    Creating Training Slices
  Implementing a Naive Bayesline
  Working with No Labeled Data
  Working with a Few Labels
    Data Augmentation
    Using Embeddings as a Lookup Table
    Fine-Tuning a Vanilla Transformer
    In-Context and Few-Shot Learning with Prompts
  Leveraging Unlabeled Data
    Fine-Tuning a Language Model
    Fine-Tuning a Classifier
    Advanced Methods
  Conclusion
10. Training Transformers from Scratch
  Large Datasets and Where to Find Them
    Challenges of Building a Large-Scale Corpus
    Building a Custom Code Dataset
    Working with Large Datasets
    Adding Datasets to the Hugging Face Hub

  Building a Tokenizer
    The Tokenizer Model
    Measuring Tokenizer Performance
    A Tokenizer for Python
    Training a Tokenizer
    Saving a Custom Tokenizer on the Hub
  Training a Model from Scratch
    A Tale of Pretraining Obiectives
    Initializing the Model
    Implementing the Dataloader
    Defining the Training Loop
    The Training Run
  Results and Analysis
  Conclusion
11. Future Directions
  Scaling Transformers
    Scaling Laws
    Challenges with Scaling
    Attention Please!
    Sparse Attention
    Linearized Attention
  Going Beyond Text
    Vision
    Tables
  Multimodal Transformers
    Speech-to-Text
    Vision and Text
  Where to from Here?
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032