幫助中心 | 我的帳號 | 關於我們

面向工程師的實用機器學習和AI(影印版)(英文版)

  • 作者:(美)傑夫·普洛西|責編:張燁
  • 出版社:東南大學
  • ISBN:9787576606577
  • 出版日期:2023/03/01
  • 裝幀:平裝
  • 頁數:400
人民幣:RMB 158 元      售價:
放入購物車
加入收藏夾

內容大鋼
    許多AI入門指南可以說都是變相的微積分書籍,但這本書基本上避開了數學。作者Jeff Prosise幫助工程師和軟體開發人員建立了對AI的直觀理解,以解決商業問題。需要創建一個系統來檢測雨林中非法砍伐的聲音、分析文本的情感或預測旋轉機械的早期故障?這本實踐用書將教你把AI和機器學習應用於職場工作所需的技能。
    書中的示例和插圖來自於Prosise在全球多家公司和研究機構教授的AI和機器學習課程。不說廢話,也沒有可怕的公式——純粹就是寫給工程師和軟體開發人員的快速入門,並附有實際操作的例子。
    本書將幫助你:
    ·學習什麼是機器學習和深度學習及其用途
    ·理解流行的機器學習演算法原理及其應用場景
    ·使用Scikit-Learn在Python中構建機器學習模型,使用Keras和TensorFlow構建神經網路
    ·訓練回歸模型以及二元和多元分類模型並給其評分
    ·構建面部識別模型和目標檢測模型
    ·構建能夠響應自然語言查詢並將文本翻譯成其他語言的語言模型
    ·使用認知服務將AI融入你編寫的應用程序中

作者介紹
(美)傑夫·普洛西|責編:張燁
    傑夫·普洛西(Jeff Prosise)是一名工程師,熱衷於向工程師和軟體開發人員介紹AI 和機器學習的種種神奇之處。作為Wintellect的聯合創始人,他已經在微軟培訓了數千名開發人員,並在一些全球最大規模的軟體會議上發表過演講。此外,Jeff在橡樹嶺國家實驗室和勞倫斯利弗莫爾國家實驗室從事高功率激光系統和聚變能源研究。他目前擔任Atmosera的首席學習官,幫助客戶將AI融入他們的產品。

目錄
Foreword
Preface
Part I.  Machine Learning with Scikit-Learn
  1. Machine Learning
    What Is Machine Learning?
      Machine Learning Versus Artificial Intelligence
      Supervised Versus Unsupervised Learning
    Unsupervised Learning with k-Means Clustering
      Applying k-Means Clustering to Customer Data
      Segmenting Customers Using More Than Two Dimensions
    Supervised Learning
      k-Nearest Neighbors
      Using k-Nearest Neighbors to Classify Flowers
    Summary
  2. Regression Models
    Linear Regression
    Decision Trees
    Random Forests
    Gradient-Boosting Machines
    Support Vector Machines
    Accuracy Measures for Regression Models
    Using Regression to Predict Taxi Fares
    Summary
  3. Classification Models
    Logistic Regression
    Accuracy Measures for Classification Models
    Categorical Data
    Binary Classification
      Classifying Passengers Who Sailed on the Titanic
      Detecting Credit Card Fraud
    Multiclass Classification
    Building a Digit Recognition Model
    Summary
  4. Text Classification
    Preparing Text for Classification
    Sentiment Analysis
    Naive Bayes
    Spam Filtering
    Recommender Systems
      Cosine Similarity
      Building a Movie Recommendation System
    Summary
  5. Support Vector Machines
    How Support Vector Machines Work
      Kernels
      Kernel Tricks
    Hyperparameter Tuning
    Data Normalization
    Pipelining
    Using SVMs for Facial Recognition

    Summary
  6. Principal Component Analysis
    Understanding Principal Component Analysis
    Filtering Noise
    Anonymizing Data
    Visualizing High-Dimensional Data
    Anomaly Detection
      Using PCA to Detect Credit Card Fraud
      Using PCA to Predict Bearing Failure
      Multivariate Anomaly Detection
    Summary
  7. Operationalizing Machine Learning Models
    Consuming a Python Model from a Python Client
    Versioning Pickle Files
    Consuming a Python Model from a C# Client
    Containerizing a Machine Learning Model
    Using ONNX to Bridge the Language Gap
    Building ML Models in C# with ML.NET
      Sentiment Analysis with ML.NET
      Saving and Loading ML.NET Models
    Adding Machine Learning Capabilities to Excel
    Summary
Part II.  Deep Learning with Keras and TensorFlow
  8. Deep Learning
    Understanding Neural Networks
    Training Neural Networks
    Summary
  9. Neural Networks
    Building Neural Networks with Keras and TensorFlow
      Sizing a Neural Network
      Using a Neural Network to Predict Taxi Fares
    Binary Classification with Neural Networks
      Making Predictions
      Training a Neural Network to Detect Credit Card Fraud
    Multiclass Classification with Neural Networks
    Training a Neural Network to Recognize Faces
    Dropout
    Saving and Loading Models
    Keras Callbacks
    Summary
  10. Image Classification with Convolutional Neural Networks
    Understanding CNNs
      Using Keras and TensorFlow to Build CNNs
      Training a CNN to Recognize Arctic Wildlife
    Pretrained CNNs
    Using ResNet50V2 to Classify Images
    Transfer Learning
    Using Transfer Learning to Identify Arctic Wildlife
    Data Augmentation
      Image Augmentation with ImageDataGenerator

      Image Augmentation with Augmentation Layers
      Applying Image Augmentation to Arctic Wildlife
    Global Pooling
    Audio Classification with CNNs
    Summary
  11. Face Detection and Recognition
    Face Detection
      Face Detection with Viola-Jones
      Using the OpenCV Implementation of Viola-Jones
      Face Detection with Convolutional Neural Networks
      Extracting Faces from Photos
    Facial Recognition
      Applying Transfer Learning to Facial Recognition
      Boosting Transfer Learning with Task-Specific Weights
      ArcFace
    Putting It All Together: Detecting and Recognizing Faces in Photos
    Handling Unknown Faces: Closed-Set Versus Open-Set Classification
    Summary
  12. Object Detection
    R-CNNs
    Mask R-CNN
    YOLO
    YOLOv3 and Keras
    Custom Object Detection
      Training a Custom Object Detection Model with the Custom Vision Service
      Using the Exported Model
    Summary
  13. Natural Language Processing
    Text Preparation
    Word Embeddings
    Text Classification
      Automating Text Vectorization
      Using TextVectorization in a Sentiment Analysis Model
      Factoring Word Order into Predictions
      Recurrent Neural Networks (RNNs)
      Using Pretrained Models to Classify Text
    Neural Machine Translation
      LSTM Encoder-Decoders
      Transformer Encoder-Decoders
      Building a Transformer-Based NMT Model
      Using Pretrained Models to Translate Text
    Bidirectional Encoder Representations from Transformers (BERT)
      Building a BERT-Based Question Answering System
      Fine-Tuning BERT to Perform Sentiment Analysis
    Summary
  14. Azure Cognitive Services
    Introducing Azure Cognitive Services
      Keys and Endpoints
      Calling Azure Cognitive Services APls
      Azure Cognitive Services Containers

    The Computer Vision Service
    The Language Service
    The Translator Service
    The Speech Service
    Putting It All Together: Contoso Travel
    Summary
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032