幫助中心 | 我的帳號 | 關於我們

深度學習在數字圖像處理中的應用/新工科建設人工智慧與智能科學系列

  • 作者:編者:馬龍華//陸哲明//崔家林//劉琮|責編:凌毅
  • 出版社:電子工業
  • ISBN:9787121437083
  • 出版日期:2022/07/01
  • 裝幀:平裝
  • 頁數:293
人民幣:RMB 89 元      售價:
放入購物車
加入收藏夾

內容大鋼
    深度學習憑借其在識別應用領域中超高的預測準確率,在圖像處理領域獲得了極大關注,這勢必將提升現有圖像處理系統的性能並開創新的應用領域。利用卷積神經網路等深層神經網路的解決方案,可以逐漸取代基於演算法可解釋的傳統圖像處理工作。儘管圖像預處理、後期處理和信號處理仍在大量採用現有方法,但在圖像分類應用中,深度學習變得愈加重要。在該背景下,本書系統介紹了深度學習在數字圖像處理各個研究分支的應用,包括圖像增強、圖像複原、圖像檢索、圖像壓縮、圖像分割、目標檢測、動作識別和圖像配准等。每一部分都對傳統方法做了概述,並穿插介紹本書作者的研究成果,反映了深度學習在數字圖像處理各個研究分支的發展現狀。本書可作為高等院校具有一定電腦基礎的人工智慧、自動化、信號與信息處理、電子信息工程、電腦科學與技術、通信工程等專業的研究生或高年級本科生的教材或參考書,也可作為科研院所相關專業的科技工作者的參考書。

作者介紹
編者:馬龍華//陸哲明//崔家林//劉琮|責編:凌毅

目錄
第1章  數字圖像處理概述
  1.1  數字圖像的基本概念
    1.1.1  數字圖像
    1.1.2  獲取靜態數字圖像的方式
    1.1.3  色彩及色彩模型
  1.2  數字圖像的獲取與描述
    1.2.1  圖像數字化
    1.2.2  圖像灰度直方圖
    1.2.3  圖像處理演算法的形式
    1.2.4  圖像的數據結構與特徵
  1.3  數字圖像處理的研究內容和應用領域
    1.3.1  數字圖像處理的基本流程
    1.3.2  數字圖像處理的研究分支
    1.3.3  傳統數字圖像處理常用的理論工具
    1.3.4  數字圖像處理的應用領域
  參考文獻
第2章  深度學習概述
  2.1  深度學習的概念
    2.1.1  深度學習的歷史背景
    2.1.2  深度學習的基本思想
    2.1.3  深度學習的本質和優勢
  2.2  國內外研究現狀
    2.2.1  深度學習在語音識別領域的研究現狀
    2.2.2  深度學習在圖像識別領域的研究現狀
    2.2.3  深度學習在自然語言處理領域的研究現狀
  2.3  深度學習典型模型結構和訓練演算法
    2.3.1  感知機
    2.3.2  前饋神經網路之多層感知機
    2.3.3  前饋神經網路之卷積神經網路
    2.3.4  反饋深度網路
    2.3.5  雙向深度網路
    2.3.6  深度學習訓練演算法
  2.4  深度學習的優點和已有的應用
    2.4.1  深度學習的優點
    2.4.2  深度學習已有的典型應用
  2.5  深度學習存在的問題及未來研究方向
    2.5.1  深度學習目前存在的問題
    2.5.2  深度學習未來研究方向
  參考文獻
第3章  基於深度學習的圖像增強與圖像恢復
  3.1  圖像去噪
    3.1.1  傳統圖像去噪方法概述
    3.1.2  基於DnCNN的圖像去噪
    3.1.3  基於CBDNet的圖像去噪
  3.2  圖像去霧
    3.2.1  傳統圖像去霧方法概述
    3.2.2  基於DehazeNet的圖像去霧
    3.2.3  基於EPDN的圖像去霧
    3.2.4  基於PMS-Net的圖像去霧
  3.3  圖像去模糊

    3.3.1  傳統圖像去模糊方法概述
    3.3.2  基於ResBlock的圖像去模糊
    3.3.3  基於DAVANet的圖像去模糊
  3.4  圖像增強
    3.4.1  傳統圖像增強方法概述
    3.4.2  基於Deep Bilateral Learning的圖像增強
    3.4.3  基於Deep Photo Enhancer的圖像增強
    3.4.4  基於Deep Illumination Estimation的圖像增強
  參考文獻
第4章  基於深度學習的圖像檢索
  4.1  圖像檢索的研究背景和研究現狀
    4.1.1  圖像檢索的研究背景
    4.1.2  為什麼要引入深度學習
    4.1.3  圖像檢索的研究現狀
  4.2  圖像特徵和相似性度量
    4.2.1  原始數據層特徵
    4.2.2  物理層特徵
    4.2.3  語義層特徵
    4.2.4  圖像相似性度量
  4.3  基於內容的圖像檢索
    4.3.1  基於顏色特徵的圖像檢索
    4.3.2  基於紋理特徵的圖像檢索
    4.3.3  基於形狀特徵的圖像檢索
    4.3.4  基於多特徵的圖像檢索
    4.3.5  基於視覺詞袋的圖像檢索
  4.4  基於注意力機制和卷積神經網路的圖像檢索
    4.4.1  注意力機制簡介
    4.4.2  圖像檢索中的注意力機制
    4.4.3  基於注意力機制和卷積神經網路模型的圖像檢索
    4.4.4  實驗結果
  4.5  基於深度信念網路的人臉圖像檢索
    4.5.1  局部二值模式
    4.5.2  DBN訓練模型
    4.5.3  融合LBP運算元與DBN網路模型的圖像檢索
    4.5.4  實驗結果
  參考文獻
第5章  基於深度學習的圖像壓縮
  5.1  圖像壓縮概述
    5.1.1  圖像壓縮的目的和意義
    5.1.2  傳統圖像壓縮的方法分類和簡介
    5.1.3  為什麼要引入深度學習
    5.1.4  基於深度學習的圖像壓縮技術現狀
  5.2  基於矢量量化的圖像壓縮方法
    5.2.1  基於矢量量化的圖像壓縮概述
    5.2.2  基於邊緣分類和范數排序的K-means演算法的碼書設計
    5.2.3  基於特徵分類和分組初始化的改進K-means演算法的碼書設計
  5.3  基於深度學習的圖像壓縮方法
    5.3.1  基於卷積神經網路的圖像壓縮方法概述
    5.3.2  基於循環神經網路的圖像壓縮方法概述
    5.3.3  基於生成對抗網路的圖像壓縮方法概述

    5.3.4  結合卷積神經網路和傳統方法的圖像壓縮
    5.3.5  實驗結果與分析
  參考文獻
第6章  基於深度學習的圖像分割
  6.1  圖像分割概述
    6.1.1  圖像分割的目的和意義
    6.1.2  傳統圖像分割方法分類
    6.1.3  典型傳統圖像分割方法簡介
    6.1.4  為什麼引入深度學習
  6.2  複雜背景下毛坯輪轂圖像分割及圓心精確定位
    6.2.1  引言
    6.2.2  基於超像素能量譜的輪轂分割
    6.2.3  精確圓擬合演算法
    6.2.4  圓擬合結果分析
  6.3  基於深度學習的圖像分割概述
    6.3.1  研究現狀
    6.3.2  幾種典型實現方案
    6.3.3  基於全卷積神經網路的圖像分割實驗結果
  6.4  基於深度生成對抗網路的超聲圖像分割
    6.4.1  引言
    6.4.2  相關工作
    6.4.3  基於深度生成對抗網路的臂叢分割
    6.4.4  實驗
  參考文獻
第7章  基於深度學習的人臉檢測與行人檢測
  7.1  基於深度學習的人臉檢測
    7.1.1  人臉檢測概述
    7.1.2  基於深度學習的人臉檢測演算法分類和數據集
    7.1.3  多任務級聯卷積網路的加速
    7.1.4  實驗結果
  7.2  行人檢測概述
    7.2.1  行人檢測基本框架
    7.2.2  基於傳統機器學習的方法
    7.2.3  基於深度學習的方法
    7.2.4  行人檢測評判標準
  7.3  基於ViBe結合HOG+SVM的快速行人檢測與跟蹤
    7.3.1  引言
    7.3.2  ViBe演算法
    7.3.3  基於HOG+SVM的行人檢測
    7.3.4  基於ViBe結合HOG+SVM方案
    7.3.5  實驗結果與分析
  參考文獻
第8章  基於深度學習的動作識別
  8.1  人體動作識別技術概述
    8.1.1  引言
    8.1.2  國內外研究現狀
    8.1.3  研究難點
  8.2  動作識別相關技術
    8.2.1  圖卷積網路
    8.2.2  用於骨骼動作識別的空時圖卷積網路

    8.2.3  用於視頻動作識別的雙流卷積網路
    8.2.4  動作識別相關數據集
  8.3  人體姿態估計
    8.3.1  人體姿態估計的分類
    8.3.2  OpenPose演算法
    8.3.3  AlphaPose演算法
    8.3.4  實驗結果比較分析
  8.4  基於圖卷積網路的骨骼序列動作識別演算法
    8.4.1  引言
    8.4.2  注意力機制和共現特徵學習
    8.4.3  基於圖卷積網路的多任務框架
    8.4.4  實驗結果及分析
  8.5  一種替代光流的視頻動作識別演算法
    8.5.1  基於光流估計的雙流卷積網路
    8.5.2  時間軌跡濾波器
    8.5.3  隨機跨幀融合
    8.5.4  實驗結果及分析
  參考文獻
第9章  基於深度學習的醫學圖像配准
  9.1  醫學圖像配准概述
    9.1.1  基本概念
    9.1.2  基本變換
    9.1.3  方法分類
    9.1.4  典型配准方法
    9.1.5  評估方法
  9.2  基於分形沙漏網路由MV-DR合成kV-DRR
    9.2.1  引言
    9.2.2  分形沙漏網路
    9.2.3  實驗
  9.3  基於公共表徵學習和幾何約束的多模態醫學圖像配准
    9.3.1  引言
    9.3.2  方法
    9.3.3  實驗及演算法比較
  9.4  基於信息瓶頸條件生成對抗網路的MV-DR和kV-DRR配准
    9.4.1  引言
    9.4.2  材料和方法
    9.4.3  結果
  參考文獻

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032