幫助中心 | 我的帳號 | 關於我們

支持向量機與基於核的機器學習導論(英文版)

  • 作者:(英)內洛·克里斯蒂安尼尼//約翰·肖·泰勒|責編:陳亮//夏丹
  • 出版社:世界圖書出版公司
  • ISBN:9787519277017
  • 出版日期:2020/09/01
  • 裝幀:平裝
  • 頁數:189
人民幣:RMB 69 元      售價:
放入購物車
加入收藏夾

內容大鋼
    支持向量機(Support Vector Machine,SVM)是建立在弗拉基米爾·萬普尼克(Vladimir Vapnik)提出的統計學習理論基礎上的一種使用廣泛的機器學習方法。這本簡明導論教程對支持向量機及其理論基礎進行了全面的介紹。書中從機器學習方法論講到到超平面、核函數、泛化理論、優化理論,最後總結到支持向量機理論,並介紹了其實現技術及應用。本書的敘述循序漸進,內容深入淺出,既嚴謹又易於理解。書中清晰的條理、富於邏輯性的推導以及優美的文字,備受初學者和專家的讚許。本書可作為電腦、自動化、電子工程、應用數學等專業的高年級本科生或研究生教材,也可作為機器學習、人工智慧、神經網路、數據挖掘等課程的參考教材,同時還是相關領域的教師和研究人員的參考書。

作者介紹
(英)內洛·克里斯蒂安尼尼//約翰·肖·泰勒|責編:陳亮//夏丹

目錄
Preface
Notation
1  The Learning Methodology
  1.1  Supervised Learning
  1.2  Learning and Generalisation
  1.3  Improving Generalisation
  1.4  Attractions and Drawbacks of Learning
  1.5  Support Vector Machines for Learning
  1.6  Exercises
  1.7  Further Reading and Advanced Topics
2  Linear Learning Machines
  2.1  Linear Classification
    2.1.1  Rosenblatt's Perceptron
    2.1.2  Other Linear Classmers
    2.1.3  Multi-class Discfimination
  2.2  Linear Regression
    2.2.1  Least Squares
    2.2.2  Ridge Regression
  2.3  Dual Representation of Linear Machines
  2.4  Exercises
  2.5  Further Reading and Advanced Topics
3  Kernel-Induced Fleature Spaces
  3.1  Learning jn Feature Space
  3.2  The Implicit Mapping into Feature Space
  3.3  Making Kernels
    3.3.1  Characterisation of Kernels
    3.3.2  Making Kernels from Kernels
    3.3.3  Making Kernels from Features
  3.4  Working in Feature Space
  3.5  Kernels and Gaussian Processes
  3.6  Exercises
  3.7  Further Reading and Advanced Topics
4  Generalisation Theory
  4.1  Probably Approximately Correct Learning
  4.2  Vapnik Chenronenkis (VC) Theory
  4.3  Margin-Based Bounds on Generalisation
    4.3.1  Maximal Margin Bounds
    4.3.2  Margin Percentile Bounds
    4.3.3  Soft Margin Bounds
  4.4  Other Bounds on Generalisation and Luckiness
  4.5  Generalisation for Regression
  4.6  Bayesian Analysis of Learning
  4.7  Exercises
  4.8  Further Reading and Advanced Topics
5  Optimisation Theory
  5.1  Problem Formulation
  5.2  Lagrangian Theory
  5.3  Duality
  5.4  Exercises
  5.5  Further Reading and Advanced Topics

6  Support Vector Machines
  6.1  Support Vector Classification
    6.1.1  The Maximal Margin Classifier
    6.1.2  Soft Margin Optimisation
    6.1.3  Linear Programming Support Vector Machines
  6.2  Support Vector Regression
    6.2.1  ε-Insensitive Loss Regression
    6.2.2  Kernel Ridge Regression
    6.2.3  Gaussian Processes
  6.3  Discussion
  6.4  Exercises
  6.5  Further Reading and Advanced Topics
7  Implementation Techniques
  7.1  General Issues
  7.2  The Naive Solution: Gradient Ascent
  7.3  General Techniques and Packages
  7.4  Chunking and Decomposition
  7.5  Sequential Minimal Optimisation (SMO)
    7.5.1  Analvtical Solution for Two Points
    7.5.2  Selection Heuristics
  7.6  Techniaues for Gaussian Processes
  7.7  Exercises
  7.8  Further Reading and Advanced Topics
8  Applications of Support Vector Machines
  8.1  Text Categorisation
    8.1.1  A Kernel from IR Applied to Information Filtering
  8.2  Image Recognition
    8.2.1  Aspect Independent Classification
    8.2.2  Colour-Based Classification
  8.3  Hand-written Digit Recognition
  8.4  Bioinformatics
    8.4.1  Protein Homology Detection
    8.4.2  Gene Expression
  8.5  Further Reading and Advanced Topics
A  Pseudocode for the SMO Algorithm
B  Background Mathematics
  B.1  vector Spaces
  B.2  Inner Product Spaces
  B.3  Hilbert Spaces
  B.4  Operators, Eigenvalues and Eigenvectors
References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032