幫助中心 | 我的帳號 | 關於我們

智能用電大數據分析--用戶行為建模聚合與預測(英文版)(精)

  • 作者:王毅//陳啟鑫//康重慶
  • 出版社:科學
  • ISBN:9787030647313
  • 出版日期:2020/07/01
  • 裝幀:精裝
  • 頁數:293
人民幣:RMB 198 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書旨在充分利用所有可獲取的數據,並將其轉化為實際信息,並將其納入電力用戶行為建模和配用電系統運行中。本書首先概述了智能電錶數據分析的最新發展。由於數據管理是進一步智能電錶數據分析及其應用的基礎,因此隨後研究了數據管理的三個問題,即數據壓縮、異常檢測和數據生成。接下面的工作試圖模擬複雜的電力用戶行為。具體工作包括負荷分析、模式識別、個性化價格設計、社會人口信息識別和家庭行為編碼。在此基礎上,本書在時空尺度上擴展了消費者行為。介紹了用戶聚合、單個負載預測和聚合負載預測等工作。我們希望這本書能夠啟發讀者去定義新的問題,應用新的方法,並通過大量的智能電錶數據,甚至電力系統中的其他監測數據,獲得一些有意思的結論。

作者介紹
王毅//陳啟鑫//康重慶

目錄
1  Overview of Smart Meter Data Analytics
  1.1  Introduction
  1.2  Load Analysis
    1.2.1  Bad Data Detection
    1.2.2  Energy Theft Detection
    1.2.3  Load Profiling
    1.2.4  Remarks
  1.3  Load Forecasting
    1.3.1  Forecasting Without Smart Meter Data
    1.3.2  Forecasting with Smart Meter Data
    1.3.3  Probabilistic Forecasting
    1.3.4  Remarks
  1.4  Load Management
    1.4.1  Consumer Characterization
    1.4.2  Demand Response Program Marketing
    1.4.3  Demand Response Implementation
    1.4.4  Remarks
  1.5  Miscellanies
    1.5.1  Connection Verification
    1.5.2  Outage Management
    1.5.3  Data Compression
    1.5.4  Data Privacy
  1.6  Conclusions
  References
2  Electricity Consumer Behavior Model
  2.1  Introduction
  2.2  Basic Concept of ECBM
    2.2.1  Definition
    2.2.2  Connotation
    2.2.3  Denotation
    2.2.4  Relationship with Other Models
  2.3  Basic Characteristics of Electricity Consumer Behavior
  2.4  Mathematical Expression of ECBM
  2.5  Research Paradigm of ECBM
  2.6  Research Framework of ECBM
  2.7  Conclusions
  References
3  Smart Meter Data Compression
  3.1  Introduction
  3.2  Household Load Profile Characteristics
    3.2.1  Small Consecutive Value Difference
    3.2.2  Generalized Extreme Value Distribution
    3.2.3  Effects on Load Data Compression
  3.3  Feature-Based Load Data Compression
    3.3.1  Distribution Fit
    3.3.2  Load State Identification
    3.3.3  Base State Discretization
    3.3.4  Event Detection
    3.3.5  Event Clustering
    3.3.6  Load Data Compression and Reconstruction

  3.4  Data Compression Performance Evaluation
    3.4.1  Related Data Formats
    3.4.2  Evaluation Index
    3.4.3  Dataset
    3.4.4  Compression Efficiency Evaluation Results
    3.4.5  Reconstruction Precision Evaluation Results
    3.4.6  Performance Map
  3.5  Conclusions
  References
4  Electricity Theft Detection
  4.1  Introduction
  4.2  Problem Statement
    4.2.1  Observer Meters
    4.2.2  False Data Injection
    4.2.3  A State-Based Method of Correlation
  4.3  Methodology and Detection Framework
    4.3.1  Maximum Information Coefficient
    4.3.2  CFSFDP-Based Unsupervised Detection
    4.3.3  Combined Detecting Framework
  4.4  Numerical Experiments
    4.4.1  Dataset
    4.4.2  Comparisons and Evaluation Criteria
    4.4.3  Numerical Results
    4.4.4  Sensitivity Analysis
  4.5  Conclusions
  References
5  Residential Load Data Generation
  5.1  Introduction
  5.2  Model
    5.2.1  Basic Framework
    5.2.2  General Network Architecture
    5.2.3  Unclassified Generative Models
    5.2.4  Classified Generative Models
  5.3  Methodology
    5.3.1  Data Preprocessing
    5.3.2  Model Training
    5.3.3  Metrics
  5.4  Case Studies
    5.4.1  Data Description
    5.4.2  Unclassified Generation
    5.4.3  Classified Generation
  5.5  Conclusion
  References
6  Partial Usage Pattern Extraction
  6.1  Introduction
  6.2  Non-negative K-SVD-Based Sparse Coding
    6.2.1  The Idea of Sparse Representation
    6.2.2  The Non-negative K-SVD Algorithm
  6.3  Load Profile Classification
    6.3.1  The Linear SVM

    6.3.2  Parameter Selection
  6.4  Evaluation Criteria and Comparisons
    6.4.1  Data Compression-Based Criteria
    6.4.2  Classification-Based Criteria
    6.4.3  Comparisons
  6.5  Numerical Experiments
    6.5.1  Description of the Dataset
    6.5.2  Experimental Results
    6.5.3  Comparative Analysis
  6.6  Further Multi-dimensional Analysis
    6.6.1  Characteristics of Residential & SME Users
    6.6.2  Seasonal and Weekly Behaviors Analysis
    6.6.3  Working Day and Off Day Patterns Analysis
    6.6.4  Entropy Analysis
    6.6.5  Distribution Analysis
  6.7  Conclusions
  References
7  Personalized Retail Price Design
  7.1  Introduction
  7.2  Problem Formulation
    7.2.1  Problem Statement
    7.2.2  Consumer Problem
    7.2.3  Compatible Incentive Design
    7.2.4  Retailer Problem
    7.2.5  Data-Driven Clustering and Preference Discovering
    7.2.6  Integrated Model
  7.3  Solution Methods
    7.3.1  Framework
    7.3.2  Piece-Wise Linear Approximation
    7.3.3  Eliminating Binary Variable Product
    7.3.4  CVaR
    7.3.5  Eliminating Absolute Values
  7.4  Case Study
    7.4.1  Data Description and Experiment Setup
    7.4.2  Basic Results
    7.4.3  Sensitivity Analysis
  7.5  Conclusions and Future Works
  Appendix I
  Appendix II
  References
8  Socio-demographic Information Identification
  8.1  Introduction
  8.2  Problem Definition
  8.3  Method
    8.3.1  Why Use a CNN?
    8.3.2  Proposed Network Structure
    8.3.3  Description of the Layers
  ……
9  Coding for Household Energy Behavior
10  Clustering of Consumption Behavior Dynamics

11  Probabilistic Residential Load Forecasting
12  Aggregated Load Forecasting with Sub-profiles
13  Prospects of Future Research Issues

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032