幫助中心 | 我的帳號 | 關於我們

自適應濾波器原理(第5版)/國外電子與通信教材系列

  • 作者:(加)西蒙·赫金|譯者:鄭寶玉
  • 出版社:電子工業
  • ISBN:9787121250521
  • 出版日期:2016/05/01
  • 裝幀:平裝
  • 頁數:689
人民幣:RMB 119 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是自適應信號處理領域的一本經典教材。全書共17章,系統全面、深入淺出地講述了自適應信號處理的基本理論與方法,充分反映了近年來該領域的新理論、新技術和新應用。內容包括:隨機過程與模型、維納濾波器、線性預測、最速下降法、隨機梯度下降法、最小均方(LMS)演算法、歸一化LMS自適應演算法及其推廣、分塊自適應濾波器、最小二乘法、遞歸最小二乘(RLS)演算法、魯棒性、有限字長效應、非平衡環境下的自適應、卡爾曼濾波器、平方根自適應濾波演算法、階遞歸自適應濾波演算法、盲反卷積,以及它們在通信與信息系統中的應用。
    全書取材新穎、內容豐富、概念清晰、闡述明了,適合於通信與電子信息類相關專業的高年級本科生、研究生、教師及工程技術人員閱讀。

作者介紹
(加)西蒙·赫金|譯者:鄭寶玉
    西蒙·赫金(Simon Haykin),IEEE會士、加拿大皇家學會會士,畢業於英國伯明翰大學電子工程系。現為加拿大McMaster大學的Distinguished University教授,認知系統實驗室主任。2002年獲國際無線電科學聯盟(URSI)頒發的Henry Booker金質獎章。在無線通信與信號處理領域的多個方面著述頗豐,主要研究方向為自適應信號處理與智能信號處理、無線通信與雷達技術,近年來特別關注認知無線電和認知雷達方面的研究。

目錄
背景與預覽
第1章  隨機過程與模型
  1.1  離散時間隨機過程的部分特性
  1.2  平均各態歷經定理
  1.3  相關矩陣
  1.4  正弦波加雜訊的相關矩陣
  1.5  隨機模型
  1.6  Wold分解
  1.7  回歸過程的漸近平穩
  1.8  尤爾-沃克方程
  1.9  電腦實驗:二階自回歸過程
  1.10  選擇模型的階數
  1.11  復值高斯過程
  1.12  功率譜密度
  1.13  功率譜密度的性質
  1.14  平穩過程通過線性濾波器傳輸
  1.15  平穩過程的Cram?r譜表示
  1.16  功率譜估計
  1.17  隨機過程的其他統計特徵
  1.18  多譜
  1.19  譜相關密度
  1.20  小結與討論
  1.21  習題
第2章  維納濾波器
  2.1  線性最優濾波:問題綜述
  2.2  正交性原理
  2.3  最小均方誤差
  2.4  維納-霍夫方程
  2.5  誤差性能曲面
  2.6  多重線性回歸模型
  2.7  示例
  2.8  線性約束最小方差濾波器
  2.9  廣義旁瓣消除器
  2.10  小結與討論
  2.11  習題
第3章  線性預測
  3.1  前向線性預測
  3.2  後向線性預測
  3.3  列文森-杜賓演算法
  3.4  預測誤差濾波器的性質
  3.5  舒爾-科恩測試
  3.6  平穩隨機過程的自回歸建模
  3.7  Cholesky分解
  3.8  格型預測器
  3.9  全極點、全通格型濾波器
  3.10  聯合過程估計
  3.11  語音預測建模
  3.12  小結與討論
  3.13  習題
第4章  最速下降法

  4.1  最速下降演算法的基本思想
  4.2  最速下降演算法應用於維納濾波器
  4.3  最速下降演算法的穩定性
  4.4  示例
  4.5  作為確定性搜索法的最速下降演算法
  4.6  最速下降演算法的優點與局限性
  4.7  小結與討論
  4.8  習題
第5章  隨機梯度下降法
  5.1  隨機梯度下降原理
  5.2  應用1:最小均方(LMS)演算法
  5.3  應用2:梯度自適應格型濾波演算法
  5.4  隨機梯度下降法的其他應用
  5.5  小結與討論
  5.6  習題
第6章  最小均方(LMS)演算法
  6.1  信號流圖
  6.2  最優性考慮
  6.3  應用示例
  6.4  統計學習理論
  6.5  瞬態特性和收斂性考慮
  6.6  統計效率
  6.7  自適應預測的電腦實驗
  6.8  自適應均衡的電腦實驗
  6.9  最小方差無失真響應波束成形器的電腦實驗
  6.10  小結與討論
  6.11  習題
第7章  歸一化最小均方(LMS)自適應演算法及其推廣
  7.1  歸一化LMS演算法作為約束最優化問題的解
  7.2  歸一化LMS演算法的穩定性
  7.3  回聲消除中的步長控制
  7.4  實數據時收斂過程的幾何考慮
  7.5  仿射投影濾波器
  7.6  小結與討論
  7.7  習題
第8章  分塊自適應濾波器
  8.1  分塊自適應濾波器:基本思想
  8.2  快速分塊LMS演算法
  8.3  無約束頻域自適應濾波器
  8.4  自正交化自適應濾波器
  8.5  自適應均衡的電腦實驗
  8.6  子帶自適應濾波器
  8.7  小結與討論
  8.8  習題
第9章  最小二乘法
  9.1  線性最小二乘估計問題
  9.2  數據開窗
  9.3  正交性原理的進一步討論
  9.4  誤差的最小平方和
  9.5  正則方程和線性最小二乘濾波器

  9.6  時間平均相關矩陣Φ
  9.7  根據數據矩陣構建正則方程
  9.8  最小二乘估計的性質
  9.9  最小方差無失真響應(MVDR)的譜估計
  9.10  MVDR波束成形的正則化
  9.11  奇異值分解
  9.12  偽逆
  9.13  奇異值和奇異向量的解釋
  9.14  線性最小二乘問題的最小范數解
  9.15  歸一化LMS演算法看做欠定最小二乘估計問題的最小范數解
  9.16  小結與討論
  9.17  習題
第10章  遞歸最小二乘(RLS)演算法
  10.1  預備知識
  10.2  矩陣求逆引理
  10.3  指數加權遞歸最小二乘演算法
  10.4  正則化參數的選擇
  10.5  誤差平方加權和的更新遞歸
  10.6  示例:單個權值自適應雜訊消除器
  10.7  統計學習理論
  10.8  效率
  10.9  自適應均衡的電腦實驗
  10.10  小結與討論
  10.11  習題
第11章  魯棒性
  11.1  魯棒性、自適應和干擾
  11.2  魯棒性:源於H∞優化的初步考慮
  11.3  LMS演算法的魯棒性
  11.4  RLS演算法的魯棒性
  11.5  從魯棒性的角度比較LMS和RLS演算法
  11.6  風險敏感的最優性
  11.7  在魯棒性與有效性(效率)之間的折中
  11.8  小結與討論
  11.9  習題
第12章  有限字長效應
  12.1  量化誤差
  12.2  最小均方演算法
  12.3  遞歸最小二乘演算法
  12.4  小結與討論
  12.5  習題
第13章  非平穩環境下的自適應
  13.1  非平穩的前因後果
  13.2  系統辨識問題
  13.3  非平穩度
  13.4  跟蹤性能評價準則
  13.5  LMS演算法的跟蹤性能
  13.6  RLS演算法的跟蹤性能
  13.7  LMS演算法和RLS演算法的跟蹤性能比較
  13.8  自適應參數的調整
  13.9  IDBD演算法

  13.10  自動步長法
  13.11  電腦實驗:平穩和非平穩環境數據的混合
  13.12  小結與討論
  13.13  習題
第14章  卡爾曼濾波器
  14.1  標量隨機變數的遞歸最小均方估計
  14.2  卡爾曼濾波問題
  14.3  新息過程
  14.4  應用新息過程進行狀態估計
  14.5  濾波
  14.6  初始條件
  14.7  卡爾曼濾波器小結
  14.8  卡爾曼濾波的最優性準則
  14.9  卡爾曼濾波器作為RLS演算法的統一基礎
  14.10  協方差濾波演算法
  14.11  信息濾波演算法
  14.12  小結與討論
  14.13  習題
第15章  平方根自適應濾波演算法
  15.1  平方根卡爾曼濾波器
  15.2  在兩種變形卡爾曼濾波器基礎上構建平方根自適應濾波器
  15.3  QRD-RLS演算法
  15.4  自適應波束成形
  15.5  逆QRD-RLS演算法
  15.6  有限字長效應
  15.7  小結與討論
  15.8  習題
第16章  階遞歸自適應濾波演算法
  16.1  採用最小二乘估計的階遞歸自適應濾波器:概述
  16.2  自適應前向線性預測
  16.3  自適應後向線性預測
  16.4  變換因子
  16.5  最小二乘格型(LSL)預測器
  16.6  角度歸一化估計誤差
  16.7  格型濾波的一階狀態空間模型
  16.8  基於QR分解的最小二乘格型(QRD-LSL)濾波器
  16.9  QRD-LSL濾波器基本特性
  16.10  自適應均衡的電腦實驗
  16.11  採用后驗估計誤差的遞歸LSL濾波器
  16.12  採用帶誤差反饋先驗估計誤差的遞歸LSL濾波器
  16.13  遞歸LSL演算法與RLS演算法之間的關係
  16.14  有限字長效應
  16.15  小結與討論
  16.16  習題
第17章  盲反卷積
  17.1  盲反卷積問題概述
  17.2  利用循環平穩統計量的通道辨識
  17.3  分數間隔盲辨識用子空間分解
  17.4  Bussgang盲均衡演算法
  17.5  將Bussgang演算法推廣到復基帶通道

  17.6  Bussgang演算法的特例
  17.7  分數間隔Bussgang均衡器
  17.8  信號源未知的概率分佈函數的估計
  17.9  小結與討論
  17.10  習題
後記
附錄A   複變函數
附錄B  計算復梯度的沃廷格微分
附錄C  拉格朗日乘子法
附錄D  估計理論
附錄E  特徵分析
附錄F  非平衡熱力學的朗之萬方程
附錄G  旋轉和映射
附錄H  複數維薩特分佈
術語
參考文獻
建議閱讀文獻
中英文術語對照表

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032