幫助中心 | 我的帳號 | 關於我們

遞推關係面面觀/陳永明數學教學叢書

  • 作者:編者:徐衛文//陶燁昕//李瑾//陳永明|責編:馮晨陽
  • 出版社:上海科教
  • ISBN:9787542881878
  • 出版日期:2024/08/01
  • 裝幀:平裝
  • 頁數:264
人民幣:RMB 60 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書彙集了有關遞推關係的知識,包括了幾個部分:首先是遞推關係的一般認識。接著是本書的重點部分——討論了遞推關係與通項公式、前n項和的互求:從遞推關係求通項公式——分類討論和思想方法匯總,從遞推關係求前n項和公式,從通項公式求遞推關係,在這些章節中,既有例題、習題的種種解法,又進行了歸類;既研究技能技巧又從思想方法角度加以分析。最後部分是關於遞推關係理論的初步探討,以及在電腦時代,為什麼遞推關係(迭代)能大放異彩。
    在遞推關係方面,本書是收集、整理得比較完整的一本參考書。適合高中師生學習參考。

作者介紹
編者:徐衛文//陶燁昕//李瑾//陳永明|責編:馮晨陽

目錄
第一章  遞推關係的意義
  第一節  遞推關係和數列的歸納定義
  第二節  幾個著名的例子
第二章  從遞推關係求通項公式——幾種常見類型
  第一節  an+1=an+f(n)型
  第二節  an+1=an·f(n)型
  第三節  an+1=pan+q型
  第四節  an+1=pan+qn型
  第五節  an+1·an=pqn型
  第六節  an+1=pan+q(n)型
  第七節  an+1=p(n)an+q(n)型
  第八節  an+2+pan+1+qan=r(r=0)型
  第九節  an+2+pan+1+qan=r(r≠0)型
  第十節  an+1=pan/ran+s型
  第十一節  an+1=pan+q/ran+s型
  第十二節  an+1=Aakn型和akn+2=Aatn+1amn型
  第十三節  一次聯立遞推關係
第三章  從遞推關係求通項公式——解法的進一步研究
  第一節  數學歸納法
  第二節  變換法
  第三節  累加法
  第四節  特徵方程法
  第五節  構造母函數法
  第六節  不動點法
  第七節  迭代法
  第八節  周期分析法
第四章  從遞推關係求前n項和
  第一節  利用通項公式的方法
  第二節  錯位法
  第三節  累加法
  第四節  尋找{Sn}的遞推關係
  第五節  母函數法
第五章  從通項公式求遞推關係
第六章  單調性和有界性問題
  第一節  單調性
  第二節  有界性
第七章  極限問題
  第一節  利用通項公式求極限
  第二節  利用無窮遞縮等比數列求極限
  第三節  利用單調有界定理求極限
  第四節  直觀解釋
第八章  我國高考中有關遞推關係的試題
第九章  雜題討論
第十章  遞推關係、迭代和電腦
參考文獻

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032