幫助中心 | 我的帳號 | 關於我們

深部緩傾斜破碎金礦床頂板失穩機制及控制技術與應用(英文版)

  • 作者:劉鵬金//汪傑//張同釗//彭康//杜加法等|責編:郭冬艷
  • 出版社:冶金工業
  • ISBN:9787524004028
  • 出版日期:2025/12/01
  • 裝幀:平裝
  • 頁數:329
人民幣:RMB 140 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書以山東某金礦深部開採為工程背景,以上向水平進路充填采場為研究對象,以揭示深部緩傾斜破碎礦體充填法開採采場圍岩穩定性特徵為目標,綜合採用室內力學試驗、理論推導及數值分析等技術手段,圍繞深部節理岩體損傷本構關係及損傷演化特徵、深部破碎圍岩穩定性分級、破碎頂板長錨索錨固作用機理及錨固能力推算、深部破碎礦體采場圍岩變形及塑性區演變規律、上向水平進路充填法回採方案優選等內容開展深入研究。
    本書主要面向高校採礦工程專業學生和企業從事採礦相關作業人員。

作者介紹
劉鵬金//汪傑//張同釗//彭康//杜加法等|責編:郭冬艷

目錄
Chapter 1 Summary
  1.1  Significance of roof stability control of gently inclined broken orebody
  1.2  Analysis of the present research situation at home and abroad
    1.2.1  Research status of joint rock mass damage in deep metal mines
    1.2.2  Stability classification of ore and rock in deep metal mine
    1.2.3  Roof support and mechanism of deep gently inclined broken ore body
    1.2.4  Stability of surrounding rock of deep gently inclined broken ore body
  1.3  Main research content and technical route
    1.3.1  Main research contents
    1.3.2  Research methods and technical route
Chapter 2 Engineering Background and Rock Mechanics Experiment
  2.1  A gold mine
  2.2  Mining technical conditions and three-dimensional model
    2.2.1  Engineering geological conditions
    2.2.2  Mining method and 3D model
  2.3  Law and characteristics of ground pressure behavior
  2.4  Stope ground pressure and its control theory
    2.4.1  The form of ground pressure in the mining area
    2.4.2  The main factors affecting the stope pressure
    2.4.3  Stope stress distribution characteristics
  2.5  Investigation on support type of gently inclined fracture gold deposit
    2.5.1  -420 m level
    2.5.2  -480 m level
    2.5.3  -560 m level
    2.5.4  -630 m level
  2.6  Laboratory experimental study on rock mechanic
    2.6.1  Rock tensile strength experiment
    2.6.2  Rock uniaxial compression experiment
    2.6.3  Rock triaxial compression test
    2.6.4  In-situ stress measurement
  2.7  Damage constitutive model of joint rock mass
    2.7.1  Damage evolution law of jointed rock mass
    2.7.2  Joint rock mass damage constitutive model
    2.7.3  Damage constitutive model validation
    2.7.4  Damage evolution characteristic analysis
  2.8  Summary of this chapter
Chapter 3 Information Acquisition of Structural Planes in Deep Rock Mass and Classification of Ore Rock Stability
  3.1  Information acquisition of rock mass structural planes
    3.1.1  Introduction to ShapeMetrix 3D system
    3.1.2  Using monte carlo method to simulate rock mass structural planes
    3.1.3  Three dimensional synthesis of jointed rock mass surface and acquisition of structural plane information
  3.2  Stability analysis of surrounding rock blocks in mining areas based on block theory
    3.2.1  Block safety factor
    3.2.2  Block stress analysis
  3.3  Summary of this chapter
Chapter 4 Classification of Fractured Rock Mass Stability Based on Fractal Theory
  4.1  Introduction
  4.2  Fractal theory of fractured rock mass
    4.2.1  Distribution characteristics of structural planes in fractured rock masses
    4.2.2
    4.2.3  Analysis of the influence of joint geometric parameters on fractal dimension
  4.3  FT grading method
    4.3.1  Determination of FT grading method indicators
    4.3.2  Calculation of score values for various indicators in FT grading method
    4.3.3  FT grading method evaluation criteria
  4.4  Engineering applications
    4.4.1  Project overview
    4.4.2  Determination of joint monitoring area
    4.4.3  Obtaining joint information in monitoring areas
    4.4.4  Classification of rock mass stability in the experimental area based on FT grading method
    4.4.5  Classification of rock mass stability in experimental areas based on traditional RMR grading method
    4.4.6  Comparison and analysis of FT grading method and traditional RMR grading method results
  4.5  Summary of this chapter
Chapter 5 Evolution Law of Surrounding Rock Stress in Full Section Mining
  5.1  Construction of numerical calculation model considering the actual distribution of joint fissures
    5.1.1  Establishment of basic model
    5.1.2  Random joint fracture network
    5.1.3  Mechanical parameters and initial conditions
    5.1.4  Simulation scheme
  5.2  Mechanical characteristics analysis of surrounding rock in single mining site
    5.2.1  Analysis of displacement of roof surrounding rock
    5.2.2  Distribution of plastic zone
    5.2.3  Stress analysis of surrounding rock based on pressure arch theory
  5.3  Analysis of mechanical properties of surrounding rocks with different mining widths
    5.3.1  Mining width 8 m
    5.3.2  Mining width 9 m
    5.3.3  Mining width 10 m
    5.3.4  Comparison of mechanical states of surrounding rocks in different mining widths
  5.4  Summary of this chapter
Chapter 6 The Anchoring Mechanism of Long Anchor Cables on the Roof of a Fractured Ore Body at Depth
  6.1  Introduction
  6.2  Mechanical model for anchoring of fractured ore body roof
    6.2.1  Anchor structure for broken roof
    6.2.2  Shear stress analysis of jointed rock mass
    6.2.3  Friction resistance analysis of jointed rock mass
    6.2.4  Vertical compressive stress analysis of top plate
    6.2.5  Analysis of minimum lateral squeezing force on the top plate
  6.3  Mechanism of pre tensioning force of anchor cable
    6.3.1  Distribution of shear stress in surrounding rock under pre tensioning force
    6.3.2  Mindlin displacement solution for shear stress distribution of surrounding rock under preloading force
    6.3.3  Relationship between pre tensioning force and surrounding rock interaction
    6.3.4  Analysis of pre tightening force requirements and influencing factors
  6.4  Design of anchor cable support for broken roof
    6.4.1  Requirements for anchoring force o
Chapter 7 Deformation Sensitivity of Stope Roadway of Deep Broken Ore Body and Long Anchor Cable Support
  7.1  Introduction
  7.2  3DEC model construction and reliability verification
  7.3  Design of numerical calculation scheme of roadway instability mechanism
  7.4  Influence of parameters on overall stability of roadway
    7.4.1  The influence of structural parameters on displacement change
    7.4.2  Influence of joint parameters on displacement change
    7.4.3  Influence of buried depth and excavation on overall stability of roadway
  7.5  Parameter sensitivity analysis
  7.6  Deformation law of roadway under the action of long anchor cable support and reinforcement
    7.6.1  Influence rule of long anchor cable spacing on roadway displacement
    7.6.2  Influence of long cable row spacing on roadway displacement
    7.6.3  Influence rule of long anchor cable length on roadway displacement
  7.7  Chapter conclusion
Chapter 8 Roof Stability Analysis of Gently Inclined Broken Ore Body Considering the Influence of Overhanging Crushed Zone
  8.1  Introduction
  8.2  Scheme design and random mechanism model construction
    8.2.1  Calculation scheme design
    8.2.2  Construction of random joint model
  8.3  Determination of model mechanical parameters and boundary conditions
    8.3.1  Selection of model mechanics parameters
    8.3.2  Determination of model boundary conditions
  8.4  Influence of crushed zone thickness and orebody dip angle on roof stability
    8.4.1  Influence of long anchor cable support on roof displacement
    8.4.2  Tractive force distribution law
    8.4.3  Distribution of plastic region
    8.4.4  Roof displacement distribution law
  8.5  Chapter conclusion
Chapter 9 Establishment of Intelligent Support Design Platform
  9.1  Deep learning model building
  9.2  Model training and structure optimization
  9.3  Construction of intelligent support design software platform
    9.3.1  RQD rock quality index
    9.3.2  RMR rock mass geo mechanical classification
    9.3.3  BQ engineering rock mass classification index
    9.3.4  Q barton rock mass quality classification
    9.3.5  GSI geological strength index
  9.4  Engineering application
    9.4.1  Monitoring area 1
    9.4.2  Monitoring area 2
    9.4.3  Monitoring area 3
    9.4.4  Monitoring areas 4
Chapter 10 Comprehensive Optimization and Application of Deep Crushed Ore Body Mining Scheme
  10.1  Introduction
  10.2  Design of mining scheme of upward horizontal approach filling mining method
    10.2.1  Pick one at a time, excavate first and then support
    10.2.2  Dig one after another, support first and then excavate
    10.2.3  Pick one every two and support in the middle

    10.3.1  Determination of subjective weights
    10.3.2  Determination of objective weights
    10.3.3  Determination of portfolio weights
  10.4  SPA-IVIFE-TOPSIS evaluation model
    10.4.1  Theory of pairs analysis (SPA)
    10.4.2  Interval intuitionistic fuzzy entropy (IVIFE)
    10.4.3  SPA-IVIFE-TOPSIS evaluation model
  10.5  Comprehensive evaluation of stope parameters
    10.5.1  Development of evaluation indicators
    10.5.2  Calculate contact information
    10.5.3  Multi-attribute weights for each indicator
    10.5.4  Determine the level of the program
    10.5.5  Interval intuition fuzzy multi-Attribute decision-making
  10.6  Mining industry testing
    10.6.1  Overview of the test stope
    10.6.2  Stope roof support
    10.6.3  Main economic and technical indicators
  10.7  Displacement and stress monitoring of key parts of the test stope
    10.7.1  Borehole stress gauge monitoring
    10.7.2  Convergence meter monitoring
    10.7.3  Roof subsidence monitoring
  10.8  Chapter summary
Chapter 11 Conclusions and Outlooks of the Book
  11.1  Full text conclusion
  11.2  The main innovations
  11.3  Prospect
References

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032