幫助中心 | 我的帳號 | 關於我們

代數幾何(第2卷)(英文版)

  • 作者:(美)大衛·曼福德//(日)小田忠雄|責編:董心意//陳亮
  • 出版社:世圖出版公司
  • ISBN:9787523230107
  • 出版日期:2026/01/01
  • 裝幀:平裝
  • 頁數:504
人民幣:RMB 88 元      售價:
放入購物車
加入收藏夾

內容大鋼
    全書共9章,系統介紹代數幾何相關知識。首先定義了概型和層,涵蓋Spec(R)、概型的積、擬凝聚層等內容,並給出層論附錄與習題。接著探索概型世界,闡述經典簇作為概型的性質、閉子概型等。對ProjR進行初等全局研究,涉及可逆層、爆破等。之後探討基域和基環,分析伽羅瓦理論與概型等。還區分了奇異與非奇異情況,介紹正則性、卡勒微分等。講解群概型及其應用,以及凝聚層的上同調,包含基本Cech上同調、上同調計算方法等。最後給出上同調應用及兩個深入結果,如黎曼-羅赫定理、森重文的有理曲線存在定理等,書末附有參考文獻和索引,便於讀者深入學習。

作者介紹
(美)大衛·曼福德//(日)小田忠雄|責編:董心意//陳亮

目錄
Preface
1  Schemes and sheaves: definitions
  1.1  Spec(R)
  1.2  M
  1.3  Schemes
  1.4  Products
  1.5  Quasi-coherent sheaves
  1.6  The functor of points
  1.7  Relativization
  1.8  Defining schemes as functors
  Appendix: Theory of sheaves
  Exercises
2  Exploring the world of schemes
  2.1  Classical varieties as schemes
  2.2  The properties: reduced, irreducible and finite type
  2.3  Closed subschemes and primary decompositions
  2.4  Separated schemes
  2.5  Proj R
  2.6  Proper morphisms
  Exercises
3  Elementary global study of Proj R
  3.1  Invertible sheaves and twists
  3.2  The functor of Proj R
  3.3  Blowups
  3.4  Quasi-coherent sheaves on Proj R
  3.5  Ample invertible sheaves
  3.6  Invertible sheaves via cocycles, divisors, line bundles
  Exercises
4  Ground fields and base rings
  4.1  Kronecker's big picture
  4.2  Galois theory and schemes
  4.3  The Frobenius morphism
  4.4  Flatness and specialization
  4.5  Dimension of fibres of a morphism
  4.6  Hensel's lemma
  Exercises
5  Singular vs. non-singular
  5.1  Regularity
  5.2  Kahler differential
  5.3  Smooth morphisms
  5.4  Criteria for smoothness
  5.5  Normality
  5.6  Zariski's Main Theorem
  5.7  Multiplicities following Well
  Exercises
6  Group schemes and applications
  6.1  Group schemes
  6.2  Lang's theorems over finite fields
  Exercises
7  The cohomology of coherent sheaves

  7.1  Basic Cech cohomology
  7.2  The case of schemes: Serre's theorem
  7.3  Higher direct images and Leray's spectral sequence
  7.4  Computing cohomology (1): Push f" into a huge acyclic sheaf
  7.5  Computing cohomology (2): Directly via the Cech complex .
  7.6  Computing cohomology (3): Generate Jr by "known" sheaves
  7.7  Computing cohomology (4): Push 5r into a coherent acyclic sheaf
  7.8  Serre's criterion for ampleness
  7.9  Functorial properties of ampleness
  7.10  The Euler characteristic
  7.11  Intersection numbers
  7.12  The criterion of Nakai-Moishezon
  7.13  Seshadri constants
  Exercises
8  Applications of cohomology
  8.1  The Riemann-Roch theorem
  Appendix: Residues of differentials on curves
  8.2  Comparison of algebraic with analytic cohomology
  8.3  de Rham cohomology
  8.4  Characteristic p phenomena
  8.5  Deformation theory
  Exercises
9  Two deeper results
  9.1  Mori's existence theorem of rational curves .
  9.2  Belyi's three-point theorem
References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032