幫助中心 | 我的帳號 | 關於我們

隨機平均法及其應用(下)(英文版)

  • 作者:朱位秋//鄧茂林//蔡國強
  • 出版社:科學
  • ISBN:9787030817037
  • 出版日期:2025/01/01
  • 裝幀:平裝
  • 頁數:456
人民幣:RMB 228 元      售價:
放入購物車
加入收藏夾

內容大鋼
    隨機平均法是研究非線性隨機動力學最有效且應用最廣泛的近似解析方法之一。本書是專門論述隨機平均法的著作,介紹了隨機平均法的基本原理,給出了多種隨機激勵(高斯白雜訊、高斯和泊松白雜訊、分數高斯雜訊、色雜訊、諧和與寬頻雜訊等)下多種類型非線性系統(擬哈密頓系統、擬廣義哈密頓系統、含遺傳效應力系統等)的隨機平均法以及在自然科學和技術科學中的若干應用,主要是近30年來浙江大學朱位秋院士團隊與美國佛羅里達大西洋大學Y.K.Lin院士和蔡國強教授關於隨機平均法的研究成果的系統總結。本書論述深入淺出,同時提供了必要的預備知識與眾多算例,以利讀者理解與掌握本書內容。

作者介紹
朱位秋//鄧茂林//蔡國強

目錄
1  Stochastic Averaging Methods of Quasi-integrable Hamiltonian Systems Excited by Colored Noises
  1.1  Stationary Wideband Noise Excitation
    1.1.1  SDOF System
    1.1.2  MDOF System
  1.2  Fractional Gaussian Noise Excitation
    1.2.1  Non-internal Resonant Case
    1.2.2  Internal Resonant Case
  1.3  Combined Harmonic and Stationary Wideband Noise Excitations
    1.3.1  Single-DOF System
    1.3.2  MDOF System
  1.4  Narrowband Randomized Harmonic Noise Excitation
    1.4.1  SDOF System
    1.4.2  MDOF System
  References
2  Stochastic Averaging Methods of Quasi-integrable Hamiltonian Systems with Genetic Effective Forces
  2.1  Quasi-integrable Hamiltonian System with Hysteretic Forces
    2.1.1  Equalization of Hysteretic Forces
    2.1.2  Stochastic Averaging for the Equivalent Quasi-integrable Hamiltonian Systems
  2.2  Quasi-integrable Hamiltonian Systems with Viscoelastic Forces
  2.3  Quasi-integrable Hamiltonian Systems with Fractional Derivative Damping Forces
  2.4  Quasi-integrable Hamiltonian Systems with Time-Delay Forces
  References
3  Stochastic Averaging Methods of Quasi-generalized Hamiltonian Systems Excited by Gaussian White Noises
  3.1  Quasi-nonintegrable Generalized Hamiltonian Systems
  3.2  Quasi-integrable Generalized Hamiltonian Systems
    3.2.1  Non-internal Resonance
    3.2.2  Internal Resonant Case
  3.3  Quasi-partially Integrable Generalized Hamiltonian Systems
    3.3.1  Non-resonant Case
    3.3.2  Internal Resonant Case
  References
4  Stochastic Averaging Method of Predator-Prey Ecosystems
  4.1  Classical Lotka-Volterra Predator-Prey Ecosystem
    4.1.1  Deterministic Models
    4.1.2  Stochastic Model
    4.1.3  Stochastic Averaging
    4.1.4  Stationary Probability Density
  4.2  Ecosystem with Predator-Saturation and Predator-Competition
    4.2.1  Deterministic Model
    4.2.2  Stochastic Model
    4.2.3  Stochastic Averaging
  4.3  Ecosystem Under Colored Noise Excitations
    4.3.1  Low-Pass Filtered Stochastic Excitation
    4.3.2  Excitation of Randomized Harmonic Process
  4.4  Time-Delayed Ecosystem
    4.4.1  Deterministic Model
    4.4.2  Stochastic Model
    4.4.3  Stochastic Averaging
  4.5  Ecosystem with Habitat Complexity
    4.5.1  Deterministic Model

    4.5.2  Equilibriums and Stability
    4.5.3  Modified Lotka-Volterra Model
    4.5.4  Stochastic Model and Stochastic Averaging
  References
5  Several Applications of the Stochastic Averaging Methods in Natural Sciences
  5.1  Motion of Active Brownian Particles
    5.1.1  Deterministic Motion of Active Brownian Particle
    5.1.2  Stochastic Motion of Active Brownian Particle
    5.1.3  Random Swarm Motion of Active Brownian Particles
  5.2  Reaction Rate Theory
    5.2.1  Kramers Reaction Rate Theory
    5.2.2  Reaction Rate Dominated by Energy Diffusion
    5.2.3  Reaction Rate on Multi-dimensional Potential Energy Landscape
    5.2.4  Reaction Rate Under Colored Noise Excitation
    5.2.5  Prediction of Reaction Rate Under Colored Noise Excitation Using the Stochastic Averaging Method in Sect. 1.1
  5.3  Fermi Resonance
    5.3.1  Pippard Model of Fermi Resonance
    5.3.2  First-Passage Time of Pippard System Under Stochastic Excitation
    5.3.3  Reaction Rate of Fermi Resonance Under Stochastic Excitation
  5.4  Thermal Motion of DNA Molecule
    5.4.1  PBD Model of DNA Molecule
    5.4.2  Stationary Motion of DNA Molecules
  5.5  Conformational Transformation of Biomacromolecule
    5.5.1  Model and Motion of Conformational Transformation
    5.5.2  Stochastic Dynamics of Conformational Transformation
    5.5.3  Denaturation of DNA Molecule
  References
6  Several Applications of the Stochastic Averaging Methods in Technical Sciences
  6.1  Vortex-Induced Random Vibration
    6.1.1  Hartlen-Currie Wake Oscillator Model
    6.1.2  Hartlen-Currie Model with Fluctuating Wind Excitation—Resonance Case
    6.1.3  Hartlen-Currie Model Under Fluctuating Wind Excitation—Non-resonance Case
    6.1.4  Nonlinear Structural Oscillator
  6.2  Multi-machine Power Systems with Stochastic Excitations
    6.2.1  Model of Single/Multi-machine Power Systems Subjected to Stochastic Excitations
    6.2.2  Stochastic Averaging
    6.2.3  Reliability of Multi-machine Power Systems
  6.3  Ship Rolling Motion
    6.3.1  Rolling Motion Equation of Ship Under Irregular Wave Excitation
    6.3.2  Averaged It? Stochastic Differential Equation
    6.3.3  Ship Capsize Probability
  6.4  Asymptotic Lyapunov Stability with Probability 1 of Quasi-Hamiltonian Systems
    6.4.1  Asymptotic Lyapunov Stability with Probability 1 of Stochastic Systems
    6.4.2  Maximum Lyapunov Exponent
    6.4.3  Lyapunov Asymptotic Stability with Probability 1 for Quasi-non-integrable Hamiltonian Systems
    6.4.4  Lyapunov Asymptotic Stability with Probability 1 of Quasi-integrable Hamiltonian Systems
  6.5  Nonlinear Sto
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032