幫助中心 | 我的帳號 | 關於我們

修正梯度彈性理論及其應用(英文版)

  • 作者:趙冰//龍承運//劉韜//陳健|責編:劉錦偉
  • 出版社:中南大學
  • ISBN:9787548762836
  • 出版日期:2025/08/01
  • 裝幀:平裝
  • 頁數:164
人民幣:RMB 68 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書通過定義內部長度尺度向量,並認為應變能密度同時取決於應變張量和應變梯度張量,提出了一種新的理論——修正梯度彈性理論 (Modified Gradient Elasticity,MGE)。該理論能夠有效描述微納結構力學行為中的尺寸效應及其耦合效應,對研究微納結構力學響應及宏——細觀關聯提供理論工具。該理論夯實了材料(結構)在微觀尺度的力學理論基礎,切實為高階連續介質理論在微納米尺度力學的發展做出了貢獻。全書共分四個部分,包括修正梯度彈性理論(MGE)的提出、MGE伯努利-歐拉梁模型、MGE鐵木辛柯梁模型和MGE理論的拓展。本書充分考慮了讀者的需求,以獨特的視角對相關領域進行了深度剖析。內容既有理論支撐又有實際案例,使讀者在閱讀過程中既能掌握專業知識,又能借鑒實際操作經驗。本書適用於力學專業的研究生和博士生、從事高階連續介質理論研究和應用的學者以及從事微納米器件設計、製造和防護方面的科研人員和技術專家。

作者介紹
趙冰//龍承運//劉韜//陳健|責編:劉錦偉

目錄
Contents
Chapter 1 Introduction
  1.1  An overview of higher-order continuum theory
  1.2  Basic equations of the modified gradient elasticity (MGE)
    1.2.1  Modified constitutive equations of gradient elasticity
    1.2.2  Principle of virtual work: equilibrium equation and boundary conditions
  1.3  Outline of this book
Chapter 2 Micro-scale Bernoulli-Euler beam model based on MGE
  2.1  Purpose of developing a micro-scale Bernoulli-Euler beam model
  2.2  The governing equation and the boundary conditions for the bending problem
  2.3  Numerical example of cantilever beams
    2.3.1  Boundary conditions statement
    2.3.2  Case 1: bending moment loading
    2.3.3  Case 2: concentrated force loading
  2.4  Comparison and discussion on the size effect
    2.4.1  The comparison of micro-beam models
    2.4.2  The influence of the internal length scales compared in different direction
    2.4.3  Features
Chapter 3 Thermal buckling of micro-scale Bernoulli-Euler beams based on MGE
  3.1  Purpose of developing the thermal buckling model
  3.2  The governing equation and boundary conditions
  3.3  Numerical examples of different supported beams
    3.3.1  Case 1: hinged-hinged micro-beams
    3.3.2  Case 2: clamped-hinged micro-beams
    3.3.3  Case 3: clamped-clamped micro-beams
  3.4  A comparison of the thermal buckling model with other models
  3.5  Chapter summary
Chapter 4 Buckling of micro-scale thin-walled Bernoulli-Euler beams based on MGE
  4.1  Purpose of developing the buckling model
  4.2  Formulations and solution methodology
    4.2.1  Governing equations and boundary conditions
    4.2.2  Understanding of the governing equations
    4.2.3  Solution methodology
  4.3  Size effect of the critical buckling load and the buckling modes
  4.4  A comparison of the buckling model with other models
  4.5  Chapter summary
Chapter 5 Thermal post-buckling of micro-scale Bernoulli-Euler beams based on MGE
  5.1  Purpose of developing the thermal post-buckling model
  5.2  The governing equations and boundary conditions
  5.3  General solution of the thermal post-buckling
    5.3.1  General solution for micro-beams with immovable axial boundary condition
    5.3.2  Analytical solution for hinged-hinged micro-beams
    5.3.3  Analytical solution for clamped-clamped micro-beams
  5.4  Thermal post-buckling behavior of different supported micro-beams
  5.5  Size effect and geometrically nonlinear effect on the thermal post-buckling
  5.6  Chapter summary
Chapter 6 Thermoelastic damping of micro-scale Bernoulli-Euler beams based on MGE
  6.1  Purpose of developing the thermoelastic damping model
  6.2  The governing equations and boundary conditions
  6.3  Heat conduction equation considering strain gradients

  6.4  Exact expression of the thermoelastic damping
  6.5  Effects of thermal performance parameters and the size effect on thermoelastic damping
  6.6  Chapter summary
Chapter 7 Micro-scale Timoshenko beam model based on the MGE
  7.1  Purpose of developing the model
  7.2  The governing equations and boundary conditions for the bending problem
  7.3  Solution methodology: A corresponding finite difference method
  7.4  Results and discussion for types of beams
    7.4.1  Case 1: a doubly clamped homogeneous micro-beam
    7.4.2  Case 2: a clamped-simply supported homogeneous micro-beam
    7.4.3  Case 3: a simply supported AFG micro-beam
Chapter 8 Thermal buckling of micro-scale Timoshenko beams based on MGE
  8.1  Purpose of developing the model
  8.2  Modeling
  8.3  Solution methodology
    8.3.1  General solution for the thermal buckling of micro-beams
    8.3.2  Analytical form for the thermal buckling of doubly clamped micro-beams
    8.3.3  Analytical form for the thermal buckling of doubly hinged micro-beams
  8.4  Results and discussion
    8.4.1  The shearing effect on the thermal buckling of micro-beams
    8.4.2  Coupling of the shearing and size effects on the thermal buckling of micro-beams
  8.5  Chapter summary
Chapter 9 Effects of local defects on the buckling of micro-scale Timoshenko beam based on MGE
  9.1  Purpose of studying the buckling of micro-beam with local thickness defects
  9.2  The governing equations and boundary conditions
  9.3  Solution methodology
  9.4  Effects of the local defects on the buckling behavior
    9.4.1  The effect of defect shape on k_α and buckling modes
    9.4.2  The effect of defect position on k_α
Chapter 10 Extension of MGE
  10.1  A stress analytical solution for Mode III crack within MGE
    10.1.1  Problem statement and basic equations
    10.1.2  Stress field
    10.1.3  Numerical results and discussion
  10.2  Discrete and finite element formulation of MGE
  10.3  Shear boundary layer analysis based on MGE
    10.3.1  Numerical tests
    10.3.2  The double 1D-Hermite shape functions for rectangle element
Appendix A
Appendix B
Afterword(後記)

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032