幫助中心 | 我的帳號 | 關於我們

黏土基地聚物材料的製備及應用(英文版)

  • 作者:范立峰//鍾惟亮//張雲寒|責編:戚琳琳
  • 出版社:中國建築工業
  • ISBN:9787112315055
  • 出版日期:2025/09/01
  • 裝幀:平裝
  • 頁數:211
人民幣:RMB 98 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書結合國內外黏土基地聚物的相關資料和作者多年積累的研究成果,總結了高性能黏土基地聚物的製備及應用技術。介紹了黏土基地聚物膠凝材料、高延性地聚物複合材料以及輕質地聚物混凝土的製備方法,評估了低溫環境和動態作用下黏土基地聚物的耐久性並提出了優化措施;提出了黏土基地聚物製備人工砂的回收技術,探討了人工地聚物砂替代河砂的應用可行性;提出了噴射型和修復型粘土基地聚物混凝土的製備方法,分析噴射型和修復型黏土基地聚物混凝土的工程性能;基於機器學習和數字圖像技術提出了黏土基地聚物的快速製備和性能預測方法。本書注重高性能黏土基地聚物材料製備技術的闡述,針對實際工程環境探討了黏土基地聚物應用方法和技術。

作者介紹
范立峰//鍾惟亮//張雲寒|責編:戚琳琳

目錄
Preface
1  Introduction
  1.1  Background
  1.2  State-of-art of geopolymer materials
    1.2.1  Preparation of clay-based geopolymer materials
    1.2.2  Improvement of geopolymer properties
    1.2.3  Application of clay-based geopolymer
2  Preparation of geopolymer paste material
  2.1  Experimental and methods
  2.2  Determination of optimum mix proportions of geopolymer
  2.3  Water stability of the geopolymer
  2.4  Microscopic pore structure characteristics of geopolymer
  2.5  Conclusions
3  Preparation of fiber reinforced geopolymer composites
  3.1  High-ductile engineered geopolymer composites
    3.1.1  Experimental and methods
    3.1.2  Workability
    3.1.3  Uniaxial tensile and flexural performance
    3.1.4  Cracking characteristic after failure
    3.1.5  Conclusions
  3.2  Hydrophobicity-modified geopolymer composites
    3.2.1  Experimental and methods
    3.2.2  Surface wettability
    3.2.3  ATR-FTIR analysis
    3.2.4  Water absorption properties
    3.2.5  Uniaxial compressive and tensile properties
    3.2.6  Conclusions
  3.3  Freezing-thawing cycle resistance of geopolymer composites
    3.3.1  Experimental and methods
    3.3.2  Relative dynamic elastic modulus after F-T cycles
    3.3.3  Mechanical properties after F-T cycles
    3.3.4  Damage evaluation prediction and verification
    3.3.5  Conclusions
  3.4  Improvement of F-T resistance by adding slag
    3.4.1  Experimental and methods
    3.4.2  Pore structure analysis
    3.4.3  Variation in physical properties after freeze-thaw cycles
    3.4.4  Mechanical properties deterioration analysis after freeze-thaw cycles
    3.4.5  Conclusions
  3.5  Improvement of F-T resistance by Hydrophobicity-modified
    3.5.1  Materials and experimental protocols
    3.5.2  Spatial damage variation after F-T cycles
    3.5.3  Damage distributions characteristics after F-T cycles
    3.5.4  Spatial gradient characteristics of damage after F-T cycles
    3.5.5  Conclusions
4  Preparation of lightweight geopolymer material
  4.1  Lightweight aggregate geopolymer concrete with shale ceramsite
    4.1.1  Experimental and methods
    4.1.2  Stress-strain curve and failure mode of LAGC
    4.1.3  The effect of sand ratio

    4.1.4  The effect of aggregate content
    4.1.5  Optimal design of concrete mix proportions
    4.1.6  Conclusions
  4.2  Optimization of lightweight geopolymer concrete using GGBFS
    4.2.1  Materials and methods
    4.2.2  The longitudinal wave velocity and dry density
    4.2.3  The pore structure characteristics of LGC with different GGBFS content
    4.2.4  Uniaxial compression performance and failure mode
    4.2.5  Conclusions
5  Application of artificial geopolymer sand
  5.1  Static mechanical properties
    5.1.1  Experimental and method
    5.1.2  Variation in density, P-wave velocity
    5.1.3  Pore size distribution properties
    5.1.4  Mechanical properties
    5.1.5  Conclusions
  5.2  Dynamic mechanical properties
    5.2.1  Materials and methods
    5.2.2  Dynamic peak stress and dynamic elastic modulus
    5.2.3  Effect of strain rate
    5.2.4  Effect of AGS replacement and strain rate
    5.2.5  Specific energy absorption and failure mode
    5.2.6  Conclusions
6  Application of geopolymer repair materials
  6.1  Bonding strength of geopolymer-concrete composites
    6.1.1  Materials and methods
    6.1.2  Splitting tensile properties and failure mode of geopolymer
    6.1.3  Effects of slag and alkaline solution contents on splitting tensile strength
    6.1.4  Compressive strength test of geopolymer concrete
    6.1.5  Conclusions
  6.2  Dynamic splitting tensile behavior of geopolymer repair materials
    6.2.1  Materials and methods
    6.2.2  Comparison of quasi-static and dynamic splitting tensile properties
    6.2.3  Dynamic splitting tensile behavior of GCC
    6.2.4  Failure pattern and dissipated energy of GCC
    6.2.5  Conclusions
7  Application of machine learning in geopolymer
  7.1  Mechanical properties prediction by image processing technology
    7.1.1  Establishment of mesoscopic structure model
    7.1.2  Validation of the accuracy of mesoscopic parameters
    7.1.3  Prediction model by combining IPT and numerical simulation
    7.1.4  Conclusions
  7.2  Mechanical properties prediction by BP neural network
    7.2.1  Experimental and methods
    7.2.2  Mechanical properties of geopolymer concrete
    7.2.3  Construction of the prediction mo