幫助中心 | 我的帳號 | 關於我們

孤立子(英文版)

  • 作者:郭柏靈//姚玉芹//趙立臣|責編:Li Xin
  • 出版社:科學
  • ISBN:9787030825148
  • 出版日期:2025/01/01
  • 裝幀:平裝
  • 頁數:341
人民幣:RMB 168 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書主要對孤立子的由來,基本問題以及它的數學物理方法做了簡要的介紹,在此基礎上,增加了怪波和波湍流等比較重要的最新研究成果。孤立子理論是重要的數學和物理理論,它揭示了非線性波動現象中的一種特殊行為,即孤立波在碰撞后能夠保持形狀、大小和方向不變。這一發現不僅在數學和物理領域產生了深遠的影響,還推動了非線性科學的發展,使其成為非線性科學的三大普適類之一。此外,孤立子理論在多個學科領域都有廣泛的應用。例如,在物理學中,孤立子理論被用於解釋和預測各種非線性波動現象,如光學孤子、聲學孤子等。在生物學、醫學、海洋學、經濟學和人口問題等領域,孤立子理論也發揮著重要作用,為解決這些領域中的非線性問題提供了新的思路和方法。

作者介紹
郭柏靈//姚玉芹//趙立臣|責編:Li Xin

目錄
Contents
Preface
Chapter 1 Introduction
  1.1  The Origin of Solitons
  1.2  KdV Equation and Its Soliton Solutions
  1.3  Soliton Solutions for Nonlinear Schr?dinger Equations and Other Nonlinear Evolutionary Equations
  1.4  Experimental Observation and Application of Solitons
  1.5  Research on the Problem of Soliton Theory
  References
Chapter 2 Inverse Scattering Method
  2.1  Introduction
  2.2  The KdV Equation and Inverse Scattering Method
  2.3  Lax Operator and Generalization of Zakharov, Shabat, AKNS
  2.4  More General Evolutionary Equation (AKNS Equation)
  2.5  Solution of the Inverse Scattering Problem for AKNS Equation
  2.6  Asymptotic Solution of the Evolution Equation (t → ∞)
    2.6.1  Discrete spectrum
    2.6.2  Continuous spectrum
    2.6.3  Estimation of discrete spectrum
  2.7  Mathematical Theory Basis of Inverse Scattering Method
  2.8  High-Order and Multidimensional Scattering Inversion Problems
  References
Chapter 3 Interaction of Solitons and Its Asymptotic Properties
  3.1  Interaction of Solitons and Asymptotic Properties of t → ∞
  3.2  Behaviour State of the Solution to KdV Equation Under Weak Dispersion and WKB Method
  3.3  Stability Problem of Soliton
  3.4  Wave Equation under Water Wave and Weak Nonlinear Effect
  References
Chapter 4 Hirota Method
  4.1  Introduction
  4.2  Some Properties of the D Operator
  4.3  Solutions to Bilinear Differential Equations
  4.4  Applications in Sine-Gordon Equation and MKdV Equation
  4.5  B?cklund Transform in Bilinear Form
  References
Chapter 5 B?cklund Transformation and Infinite Conservation Law
  5.1  Sine-Gordon Equation and B?cklund Transformation
  5.2  B?cklund Transformation of a Class of Nonlinear Evolution Equation
  5.3  B Transformation Commutability of the KdV Equation
  5.4  B?cklund Transformations for High-Order KdV Equation and High-Dimensional Sine-Gordon Equation
  5.5  B?cklund Transformation of Benjamin-Ono Equation
  5.6  Infinite Conserved Laws for the KdV Equation
  5.7  Infinite Conservation Quantities of AKNS Equation
  References
Chapter 6 Multidimensional Solitons and Their Stability
  6.1  Introduction
  6.2  The Existence Problem of Multidimensional Solitons
  6.3  Stability and Collapse of Multidimensional Solitons
  References
Chapter 7 Numerical Calculation Methods for Some Nonlinear Evolution Equations

  7.1  Introduction
  7.2  The Finite Difference Method and Galerkin Finite Element Method for the KdV Equations
  7.3  The Finite Difference Method for Nonlinear Schr?dinger Equations
  7.4  Numerical Calculation of the RLW Equation
  7.5  Numerical Computation of the Nonlinear Klein-Gordon Equation
  7.6  Numerical Computation of a Class of Nonlinear Wave Stability Problems
  References
Chapter 8 The Geometric Theory of Solitons
  8.1  B?cklund Transform and Surface with Total Curvature K = -1
  8.2  Lie Group and Nonlinear Evolution Equations
  8.3  The Prolongation Structure of Nonlinear Equations
  References
Chapter 9 The Global Solution and 「Blow up」 Problem of Nonlinear Evolution Equations
  9.1  Nonlinear Evolutionary Equations and the Integral Estimation Method
  9.2  The Periodic Initial Value Problem and Initial Value Problem of the KdV Equation
  9.3  Periodic Initial Value Problem for a Class of Nonlinear Schr?dinger Equations
  9.4  Initial Value Problem of Nonlinear Klein-Gordon Equation
  9.5  The RLW Equation and the Galerkin Method
  9.6  The Asymptotic Behavior of Solutions and「Blow up」 Problem for t → ∞
  9.7  Well-Posedness Problems for the Zakharov System and Other Coupled Nonlinear Evolutionary Systems
  References
Chapter 10 Topological Solitons and Non-topological Solitons
  10.1  Solitons and Elementary Particles
  10.2  Preliminary Topological and Homotopy Theory
  10.3  Topological Solitons in One-Dimensional Space
  10.4  Topological Solitons in Two-Dimensional
  10.5  Three-Dimensional Magnetic Monopole Solution
  10.6  Topological Solitons in Four-Dimensional Space—Instantons
  10.7  Non-topological Solitons
  10.8  Quantization of Solitons
  References
Chapter 11 Solitons in Condensed Matter Physics
  11.1  Soliton Motion in Superconductors
  11.2  Soliton Motion in Ferroelectrics
  11.3  Solitons in Coupled Systems in Solids
  11.4  Statistical Mechanics of Toda Lattice Solitons
  References
Chapter 12 Rogue Wave and Wave Turbulence
  12.1  Rogue Wave
  12.2  Formation of Rogue Wave
  12.3  Wave Turbulence
  12.4  Soliton and Quasi Soliton
    12.4.1  The Instability and Blow-up of Solitons
    12.4.2  The Case of Quasi-Solitons
  References

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032