幫助中心 | 我的帳號 | 關於我們

LF精煉過程解析與建模(英文版)

  • 作者:信自成//劉青|責編:王恬君
  • 出版社:冶金工業
  • ISBN:9787524001843
  • 出版日期:2025/07/01
  • 裝幀:平裝
  • 頁數:176
人民幣:RMB 88 元      售價:
放入購物車
加入收藏夾

內容大鋼
    隨著工業自動化和智能化的發展,智能製造已成為鋼鐵行業轉型升級的重要內容。本書以國內某鋼廠150 t LF鋼包精煉爐為研究對象,採用Python、C#電腦編程語言和SPSS、Minitab統計分析軟體等手段,運用冶金機理與機器學習融合的定製化建模策略,從鋼水升溫、脫硫、合金化和底吹氬攪拌四個方面對LF精煉模型構建進行介紹。本書構建了LF精煉溫度預測模型、脫硫模型、合金化模型和鋼包底吹氬攪拌模型,兩者的融合有效提高了模型的計算精度,對LF精煉智能化發展具有重要意義。

作者介紹
信自成//劉青|責編:王恬君

目錄
Chapter 1  Overview of Research on the LF Refining Process
  1.1  Overview of LF Refining
    1.1.1  Development of LF Refining Technology
    1.1.2  Metallurgical Functions of LF
    1.1.3  Operational Workflow of LF Refining Process
  1.2  Machine Learning Algorithms and Their Application in the Metallurgical Industry
    1.2.1  Concept and Development of Machine Learning
    1.2.2  Machine Learning Algorithm Classification
    1.2.3  Application of Machine Learning in Metallurgical Industry
  1.3  Research on LF Refining Technology
    1.3.1  Prediction Model of Molten Steel Temperature
    1.3.2  Slagmaking Model
    1.3.3  Alloying Model of Molten Steel
    1.3.4  Argon Blowing Model
  References
Chapter 2  Research on Prediction Model of Molten Steel Temperature
  2.1  Analysis of LF Refining Process
    2.1.1  Description of LF Refining Process
    2.1.2  Analysis Conservation of Energy
    2.1.3  Analysis of Main Factors
  2.2  Establishment of Prediction Model for Molten Steel Temperature
    2.2.1  Modeling with ML Models
    2.2.2  Data Processing Methods
    2.2.3  Optimization Algorithms
    2.2.4  ML Algorithms
    2.2.5  SHAP
    2.2.6  Model Evaluation
  2.3  Evaluation of Prediction Model for Molten Steel Temperature
    2.3.1  High Dimensional Data Visualization and Processing
    2.3.2  Hyperparameter Optimization of XGBoost and LCBM
    2.3.3  Outcomes of XCBoost, LGBM, MLP, KNN, and MLR
  2.4  Model Explainability Analysis
    2.4.1  Tree Structure Visualization
    2.4.2  Global Explanation
    2.4.3  Local Explanation
  2.5  Conclusions
  References
Chapter 3  Research on Slagmaking Desulfurization Model
  3.1  Desulphurization Fundamental
    3.1.1  Thermodynamic Fundamentals
    3.1.2  Kinetic Fundamentals
  3.2  C Calculation Using RELM Model
    3.2.1  Analyzing of Database and Data for Cs Calculation
    3.2.2  Modeling in RELM
    3.2.3  Model Evaluation
  3.3  Evaluation of C, Prediction Models
    3.3.1  Effect of MgO and Activation Function on Cs
    3.3.2  Comparison of the RELM Model with Other Models
  3.4  Establishment of Slagmaking Model
    3.4.1  Analysis of Factors for Ls

    3.4.2  Refining Process and Modeling Hypothesis
    3.4.3  . Modeling Based on Metallurgical Mechanism
    3.4.4  Mathematical Modeling Based on Historical Production Data
  3.5  Evaluation of Slagmaking Model
    3.5.1  Testing of Slagmaking Model
    3.5.2  .Software Development of Slagmaking Model
    3.5.3  Plant Trial
  3.6  Conclusions
  References
Chapter 4  Research on Alloying Model
  4.1  Analysis of the LF Refining Process
    4.1.1  Description of the LF Refining Process
    4.1.2  Data Collection and Normalization
  4.2  Predicting Alloying Element Yield Using the PCA-DNN Model
    4.2.1  Theories and Methods
    4.2.2  Establishment of PCA-DNN Model
    4.2.3  Model Evaluation
  4.3  Evaluation of Alloying Element Yield Prediction Model Correlation Analysis
    4.3.2  PCA
    4.3.3  Structure Optimization of the PCA-DNN Model
    4.3.4  Comparison of the PCA-DNN Model with Other Models
  4.4  Calculation Model for Amount of Alloy Addition
    4.4.1  Alloy Addition Principle
    4.4.2  Evaluation of Calculation Model for Alloy Addition
  4.5  Conclusions
  References
Chapter 5  Research on Argon Bottom Blowing Model
  5.1  Experimental Principles and Methods
    5.1.1  Experimental Principles
    5.1.2  Experimental Method
  5.2  Experimental Schemes
    5.2.1  Single Factor Analysis Experiment Scheme of Argon Bottom Blowing of LF
    5.2.2  Experimental Scheme and Results of Argon Bottom Blowing of LF Based on RSM
  5.3  Experimental Results of Single Factor Analysis
    5.3.1  Effect of Porous Plug Radial Position on MT
    5.3.2  Effect of Porous Plug Separation Angle on MT
    5.3.3  Effects of Different Factors on MT and SEA
  5.4  Experimental Results of Argon Bottom Blowing Based on RSM
    5.4.1  Establishment of Prediction Models
    5.4.2  Analysis of Variance and Model Evaluation
    5.4.3  Visual Analysis of Response Surface
    5.4.4  Multiobjective Optimization and Experimental Verification
    5.4.5  Analysis of Slag Entrainment
  5.5  Conclusions
  References
Chapter 6  Development of LF Refining Model Set and Prospects for Intelligent
  6.1  Architecture of LF Refining Model Set
  6.2  Establishment of Model Set
    6.2.1  Molten Steel Temperature Prediction Model Based on the Law of Energy Conservation, LCBM, and SHAP Analysis
    6.2.2  Desulfurization Model Based on the Law of Mass Conservation and PMLR

    6.2.3  Alloying Model Based on the Law of Mass Conservation uva and PCA-DNN
    6.2.4  Argon Bottom Blowing Model Based on the Similarity Theory and RSM
  6.3  System Structure Design
  6.4  Technical Framework of Future for LF Intelligent Refining
  References

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032