幫助中心 | 我的帳號 | 關於我們

高等數學(英文版)

  • 作者:編者:付敏//李圓媛//阮正順|責編:王思
  • 出版社:武漢理工
  • ISBN:9787562974277
  • 出版日期:2025/05/01
  • 裝幀:平裝
  • 頁數:275
人民幣:RMB 48 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書專為共建「一帶一路」國家留學生設計,旨在提供系統化、實用性強的高等數學學習資源。本書內容涵蓋微積分核心模塊,結合工程、經濟與管理學科中的實際案例,幫助學生將數學工具應用於專業領域。全書採用英文編寫,語言簡潔,配有豐富的圖表、習題,兼顧了不同文化背景學生的學習需求。本書融入中國傳統文化特色,包含《易經》的哲學思想,並且強化數學建模能力,從基礎理論到高階應用循序漸進,適應不同基礎的學習者。本書適用於理工科、經管類共建「一帶一路」國家本科留學生,需強化數學基礎的研究生,以及職業技術人員。本書致力於推動「一帶一路」學術交流,為國際化人才培養提供堅實的數學支持。

作者介紹
編者:付敏//李圓媛//阮正順|責編:王思

目錄
Chapter 1  Functions and Limits
  1.1  Mapping and Function
    1.1.1  Mapping
    1.1.2  Function
    1.1.3  Elementary Functions
  1.2  Properties of Function
    1.2.1  Boundness
    1.2.2  Monotonicity
    1.2.3  Symmetry
    1.2.4  Periodicity
  1.3  Form a New Function from Known Functions
    1.3.1  Arithmetic Operations of Functions
    1.3.2  Composite Function
    1.3.3  Inverse Function
    1.3.4  Primary Function
  1.4  The Limit of a Function
    1.4.1  The Definition of a Limit
    1.4.2  The Precise Definition of a Limit
    1.4.3  One-Sided Limit
    1.4.4  Infinite Limits
  1.5  Properties of Function Limits
    1.5.1  Properties of Function Limits
    1.5.2  Relationship Between Function Limit and Sequence Limit
  1.6  Calculating Limits Using the Limit Laws
    1.6.1  Limit Laws
    1.6.2  Two Important Limits
  1.7  Infinitesimals and Infinite Limits
    1.7.1  Infinitesimals
    1.7.2  Infinite Limits
    1.7.3  Comparison of Infinitesimals
  1.8  Continuity of Functions
    1.8.1  Concept of Continuity
    1.8.2  Properties of Continuous Functions
    1.8.3  Discontinuities of Functions and Their Classification
  1.9  Properties of Continuous Functions on Closed Intervals
    1.9.1  Extreme Value Theorem
    1.9.2  Intermediate Value Theorem
  Comprehensive Review 1
Chapter 2  Derivatives and Differentiation
  2.1  Concept of Derivative
    2.1.1  Examples and Definitions
    2.1.2  Elementary Functions' Derivative
    2.1.3  Geometrical Meaning of the Derivative
    2.1.4  Relationship Between Differentiability and Continuity
  2.2  Rules of Differentiation
    2.2.1  Rules for Differentiating Arithmetic Operations
    2.2.2  Derivative Rules for Inverse Functions
    2.2.3  Chain Rules for Composite Functions
    2.2.4  Basic Derivative Formulas
  2.3  Higher-Order Derivatives

  2.4  Implicit Differentiation
    2.4.1  Derivative of Implicit Functions
    2.4.2  Related Rates of Change
  2.5  Differential of a Function
    2.5.1  Concept of Differentiation
    2.5.2  Differential Formulas and Rules
    2.5.3  Application of Differentials in Approximation
  Comprehensive Review 2
Chapter 3  Applications of Derivatives
  3.1  Mean Value Theorems
    3.1.1  Rolle's Mean Value Theorem
    3.1.2  Lagrange's Mean Value Theorem
  3.2  L'Hospital's Rule
  3.3  Monotonicity and Extremum of Functions
    3.3.1  Monotonicity of Functions
    3.3.2  Extreme Values of Functions
  3.4  Maximum and Minimum Values of Functions and Their Applications
  3.5  Concavity and Inflection Points of Curves
  3.6  Sketch Functions
    3.6.1  Asymptotes of Curves
    3.6.2  Graphical Representation of Functions
  Comprehensive Review 3
Chapter 4  Indefinite Integrals
  4.1  Concept and Properties of Indefinite Integrals
    4.1.1  Primitive Function and Indefinite Integral
    4.1.2  Properties of Indefinite Integrals
    4.1.3  Basic Integration Formulas
    4.1.4  Direct Integration Method
  4.2  Integration by Substitution
    4.2.1  The First Type of Substitution Method
    4.2.2  The Second Type of Substitution Method
  4.3  Integration by Parts
  4.4  Integration of Rational Functions and Functions Reducible to Rational Functions
    4.4.1  Integration of Rational Functions
    4.4.2  Integration of Rational Trigonometric Functions
    4.4.3  Integration of Simple Irrational Functions
    4.4.4  Use of Integration Tables
  Comprehensive Review 4
Chapter 5  Definite Integrals and Their Applications
  5.1  Concept and Properties of Definite Integrals
    5.1.1  Examples of Definite Integral Problems
    5.1.2  Definition of the Definite Integral
    5.1.3  Properties of Definite Integrals
  5.2  Fundamental Theorem of Calculus
    5.2.1  The Relationship Between Position Function and Velocity Function
    5.2.2  Function of the Upper Limit of Integration and Its Derivative
    5.2.3  Newton-Leibniz Formula
  5.3  Integration by Substitution and by Parts for Definite Integrals
    5.3.1  Integration by Substitution for Definite Integrals
    5.3.2  Integration by Parts in Definite Integrals

  5.4  Improper Integrals
    5.4.1  Improper Integrals over Infinite Intervals
    5.4.2  Improper Integrals of Unbounded Functions
  5.5  Area of Plane
    5.5.1  The Element Method of Definite Integrals
    5.5.2  Area of Plane
  5.6  Volume of Solids
    5.6.1  Volume of Solids of Revolution
    5.6.2  Volume of a Solid with Known Cross - Sectional Area
  5.7  Applications of Definite Integrals in Physics
    5.7.1  Work
    5.7.2  Pressure
    5.7.3  Force
  Comprehensive Review 5
Chapter 6  Differential Equations
  6.1  Basic Concepts of Differential Equations
  6.2  Separable Differential Equations and Homogeneous Equations
    6.2.1  Separable Differential Equations
    6.2.2  Homogeneous Equations
  6.3  First - Order Linear Differential Equations
    6.3.1  Solution Method for First - Order Linear Equations
    6.3.2  Bernoulli Equation
  6.4  Total Differential Equations
  Comprehensive Review 6
Chapter 7  Infinite Series
  7.1  Concepts and Properties of Constant Term Series
    7.1.1  Constant Term Series
    7.1.2  Basic Properties of Convergent Series
  7.2  Positive Series
  &nb