幫助中心 | 我的帳號 | 關於我們

表面和界面的化學鍵合(英文版)

  • 作者:編者:(瑞典)安德斯·尼爾松//拉爾斯·G.M.彼得松//(丹麥)延斯·K.內斯科烏|責編:陳亮//劉葉青
  • 出版社:世圖出版公司
  • ISBN:9787523223451
  • 出版日期:2025/08/01
  • 裝幀:平裝
  • 頁數:520
人民幣:RMB 119 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書始於表面吸附結構信息的概述,並討論了一些重要的化學吸附系統的結構,詳細描述了觀察到的表面結構中原子或分子與金屬表面之間的化學鍵,詳細描述了表面上鍵形成和鍵斷裂動力學的實驗信息。然後基於d波段模型對多相催化的各個方面進行了深入分析,涵蓋了非常重要的硅和鍺半導體表面的吸附和化學,著眼于固體-氣體界面,並探索了固體-液體界面過程,概述了發生在與水和電解質接觸的礦物和氧化物表面上的重要的環境化學過程。

作者介紹
編者:(瑞典)安德斯·尼爾松//拉爾斯·G.M.彼得松//(丹麥)延斯·K.內斯科烏|責編:陳亮//劉葉青

目錄
Preface
Anders Nilsson, Lars G. M. Pettersson and Jens K. N?rskov
1 Surface Structure.
  1 Why surface structure?
  2 Methods of surface adsorbate structure determination
    2.1 General comments
    2.2 Electron scattering
    2.3 X-ray scattering..
    2.4 Ion scattering
    2.5 Spectroscopic methods and scanning probe microscopy
  3 Adsorbate-induced surface reconstruction
  4 Molecular adsorbates - local sites, orientations and intramolecular bondlengths
    4.1 General issues and the case of CO on metals
    4.2 Simple hydrocarbons on metals
    4.3 Carboxylates on metals
    4.4 Other substrates: molecules on Si
  5 Chemisorption bondlengths
    5.1 Metal surfaces
    5.2 Oxide surfaces
  6 Conclusions
2 Adsorbate Electronic Structure and Bonding on Metal Surfaces
  1 Introduction
  2 Probing the electronic structure
  3 Adsorbate electronic structure and chemical bonding
  4 Adsorbate systems
  5 Radical atomic adsorption
    5.1 The electronic structure of N on Cu(100)
    5.2 Chemical bonding of atomic adsorbates
  6 Diatomic molecules
    6.1 N2 adsorbed on Ni(100)
    6.2 CO adsorbed on Ni(100)
    6.3 CO adsorbed on Cu(100) and other metals
    6.4 CO adsorbed in different sites
    6.5 Coadsorption of CO and K on Ni(100)
  7 Unsaturated hydrocarbons
    7.1 Ethylene (C2H4) adsorbed on Ni(110) and Cu(110)
    7.2 Benzene on Ni and Cu surfaces
    7.3 Bond energetics and rehybridization from spin-uncoupling
  8 Saturated hydrocarbons
    8.1 n-Octane adsorbed on Cu(110)
    8.2 Difference between octane on Ni and Cu surfaces
  9 Lone pair interactions
    9.1 Water adsorption on Pt and Cu surfaces
    9.2 Adsorption of ammonia and the amino group in glycineon Cu(110)
  10 Summary
3 The Dynamics of Making and Breaking Bonds at Surfaces
  1 Introduction
  2 Theoretical background
    2.1 Adiabatic dynamics (Born-Oppenheimer approximation)
    2.2 Generic PES topologies

    2.3 Dynamics vs. kinetics
      2.3.1 Direct dissociation
      2.3.2 Precursor-mediated dissociation
    2.4 Detailed balance
    2.5 Lattice coupling
      2.5.1 Energy transfer in adsorption/scattering
      2.5.2 Lattice coupling in direct molecular dissociation
    2.6 Non-adiabatic dynamics
      2.6.1 Hot electrons from chemistry
      2.6.2 Chemistry from hot electrons
  3 Experimental background
    3.1 Experimental techniques
    3.2 Typical measurements
      3.2.1 Rate measurements
      3.2.2 Adsorption-trapping and sticking
      3.2.3 Desorption
      3.2.4 Scattering
      3.2.5 Initial state preparation
      3.2.6 Photochemistry/femtochemistry
      3.2.7 Single molecule chemistry (STM)
  4 Processes
    4.1 Atomic adsorption/desorption/scattering
      4.1.1 Ar/Pt(111)
      4.1.2 H/Cu(111)
    4.2 Molecular adsorption/desorption/scattering
      4.2.1 NO/Ag(111)
      4.2.2 NO/Pt(111)
    4.3 Direct dissociation/associative desorption
      4.3.1 Activated dissociation
      4.3.2 Weakly activated dissociation
      4.3.3 Non-activated dissociation
    4.4 Precursor-mediated dissociation/associative desorption
      4.4.1 O2/Pt(111)
    4.5 Direct and precursor-mediated dissociation
      4.5.1 N2/W(100)
      4.5.2 NH3/Ru(0001)
    4.6 Langmuir-Hinschelwood chemistry
      4.6.1 (O+CO)/Pt(111)
    4.7 Eley-Rideal/Hot atom chemistry
      4.7.1 H+H/Cu(111)
    4.8 Hot electron chemistry
      4.8.1 Photochemistry/femtochemistry
      4.8.2 Single molecule chemistry
  5 Summary and outlook
4  Heterogeneous Catalysis
  1 Introduction
  2 Factors determining the reactivity of a transition metal surface
  3 Trends in adsorption energies on transition metal surfaces
  4 The d-band model.
    4.1 One-electron energies and bond energy trends

    4.2 The Newns-Anderson model
  5 Trends in chemisorption energies
    5.1 Variations in adsorption energies from one metal to the next
    5.2 Ligand effects in adsorption - changing the d band center
      5.2.1 Variations due to changes in surface structure
      5.2.2 Variations due to alloying
    5.3 Ensemble effects in adsorption - the interpolation principle
  6  Trends in activation energies for surface reactions
    6.1 Electronic effects in surface reactivity
    6.2 Geometrical effects in surface reactivity
  7 Br?nsted-Evans-Polanyi relationships in heterogeneousl catalysis
    7.1 Correlations from DFT calculations
    7.2 Universal relationships
  8 Activation barriers and rates
    8.1 Transition state theory
    8.2 Variational transition state theory and recrossings
    8.3 Harmonic transition state theory (HTST)
  9 Variations in catalytic rates - volcano relations
    9.1 Dissociation rate-determined model
    9.2 A Le Chatelier-like principle for heterogeneous catalysis
    9.3 Including molecular precursor adsorption
    9.4 Sabatier analysis
    9.5 A realistic desorption model
    9.6 Database of chemisorption energies
  10 The optimization and design of catalyst through modeling
    10.1 The low-temperature water gas shift (WGS) reaction
    10.2 Methanation
  11 Conclusions and outlook
5 Semiconductor Surface Chemistry
  1 Inroduction
  2 Structure of semiconductor surfaces
    2.1 Silicon surface structure
    2.2 Germanium surface structure
  3 Surface oxidation
    3.1 Silicon
    3.2 Germanium
  4 Passivation of semiconductor surfaces
    4.1 Silicon passivation
      4.1.1 Hydride termination of silicon
    4.2 Germanium passivation
      4.2.1 Sulfide passivation of germanium
      4.2.2 Chloride passivation of germanium
      4.2.3 Hydride termination of germanium
  5 Reactions at passivated semiconductor surfaces
    5.1 Organic functionalization of semiconductor surface
    5.2 Reaction with passivated silicon (Si-H and Si-CI)
      5.2.1 Hydrosilylation
      5.2.2 Grignard reactions on silicon
    5.3 Reaction with passivated germanium (Ge-H and Ge-Cl)
      5.3.1 Grignard reactions on germanium

      5.3.2 Hydrogermylation
      5.3.3 Alkanethiol reactions on germanium
    5.4 Reaction with compound semiconductors
  6 Adsorption of organic molecules under vacuum conditions
    6.1 Silicon surface chemistry
      6.1.1 Cycloaddition reaction on Si(100)-2x1
      6.1.2 Heterocycloadditions
      6.1.3 Nueleophilic/electrophilic reactions
    6.2 Germanium surface chemistry
      6.2.1 Cycloaddition reactions on Ge(100)-2x1
      6.2.2 Heterocycloadditions
      6.2.3 Nucleophilic/electrophilic reactions
      6.2.4 Multiple-layer reactions
    6.3 Summary of concepts in organic functionalization
6 Surface Electrochemistry
  1 Introduction
  2 Special features of electrochemical reactions
    2.1 Electrochemical current and potential
    2.2 Electrochemical interfaces
    2.3 Models of electrochemical electron transfer kinetics
  3 Electrochemistry at the molecular scale
    3.1 Surface structure
    3.2 Bonding of ions
    3.3 Bonding of water
    3.4 Experimental aspects of current/voltage properties
  4 Electrocatalytic reaction processes
    4.1 The electrocatalytic reduction of oxygen
      4.1.1 Background
      4.1.2 Mechanistic pathways
      4.1.3 Electroreduction of oxygen on Pt and Pt alloys
      4.1.4 Recent quantum chemical studies of the ORR mechanism
      4.1.5 State-of-the-art ORR electrocatalyst concepts
    4.2 The electrochemical oxidation of small organic molecules
      4.2.1 The electrooxidation of carbon monoxide
      4.2.2 The electrooxidation of formic acid and methanol
    5 Summary and outlook
7 Geochemistry of Mineral Surfaces and Factors Affecting Their ChemicalReactivity
  1 Introduction
  2 Environmental interfaces
    2.1 Common minerals in Earth's crust, soils, and atmosphere, weathering mechanisms and products, and less common minerals that contain oradsorb environmental contaminants
    2.2 Solubilities of Al- and Fe(III)-oxides and Al and Fe(III)-(oxy)hydroxides
    2.3 Dissolution mechanisms at feldspar-water interfaces
    2.4 The nature of metal oxide-aqueous solution interfaces -Ssome basics
  3 Factors affecting the chemical reactivity of mineral surfaces
    3.1 The reaction of water vapor with metal oxide surfaces - surface science and theoretical studies of simplified model systems S.S illustrating effects of defect density and adsorbate cooperative effects
    3.2 Grazing incidence EXAFS spectroscopic studies of Pb(II)aq adsorption on metal oxide surfaces - effect of differences in mue surface functional groups on reactivity
    3.3 The structure of hydrated metal oxide surfaces from X-ray uoela cosh diffraction studies
    3.4 X-ray standing wave studies of the electrical double layer at solid-aqueous solution interfaces and in situ measurements of surface reactivity
    3.5 Effect of organic coatings and microbial biofilms on met
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032