幫助中心 | 我的帳號 | 關於我們

希爾伯特空間及應用導論(第3版)(英文版)

  • 作者:(美)洛肯納斯·德布納斯//(波)皮奧特·米庫辛斯基|責編:陳亮//董心意
  • 出版社:世圖出版公司
  • ISBN:9787523218617
  • 出版日期:2025/06/01
  • 裝幀:平裝
  • 頁數:580
人民幣:RMB 139 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是一部深入介紹希爾伯特空間理論及其廣泛應用的經典教材。書中內容從內積空間和希爾伯特空間的基本概念出發,詳細闡述了這些空間的幾何性質和重要定理。同時,本書還通過豐富的實例和詳盡的解釋,展示了希爾伯特空間在傅里葉分析、積分方程、微分方程和量子力學等多個領域的實際應用。內容組織嚴謹,語言簡潔明了,適合數學、物理和工程領域的研究生和研究人員閱讀。通過閱讀本書,讀者不僅能夠系統地掌握希爾伯特空間的理論知識,還能將其靈活應用於實際問題的解決中。

作者介紹
(美)洛肯納斯·德布納斯//(波)皮奧特·米庫辛斯基|責編:陳亮//董心意

目錄
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
CHAPTER 1  Normed Vector Spacese
  1.1  Introduction
  1.2  Vector Spaces
  1.3  Normed Spaces
  1.4  Banach Spaces
  1.5  Linear Mappings
  1.6  Contraction Mappings and the Banach Fixed Point Theorem
  1.7  Exercises
CHAPTER 2  The Lebesgue Integral
  2.1  Introduction
  2.2  Step Functions
  2.3  Lebesgue Integrable Functions
  2.4  The Absolute Value of an Integrable Function
  2.5  Series of Integrable Functions
  2.6  Norm in L'(R)
  2.7  Convergence Almost Everywhere
  2.8  Fundamental Convergence Theorems
  2.9  Locally Integrable Functions
  2.10  The Lebesgue Integral and the Riemann Integral
  2.11  Lebesgue Measure on R
  2.12  Complex-Valued Lebesgue Integrable Functions
  2.13  The Spaces U(R)
  2.14  Lebesgue Integrable Functions on R
  2.15  Convolution
  2.16  Exercises
CHAPTER 3  Hilbert Spaces and Orthonormal Systems
  3.1  Introduction
  3.2  Inner Product Spaces
  3.3  Hilbert Spaces
  3.4  Orthogonal and Orthonormal Systems
  3.5  Trigonometric Fourier Series
  3.6  Orthogonal Complements and Projections
  3.7  Linear Functionals and the Riesz Representation Theorem
  3.8  Exercises
CHAPTER 4  Linear Operators on Hilbert Spaces
  4.1  Introduction
  4.2  Examples of Operators
  4.3  Bilinear Functionals and Quadratic Forms
  4.4  Adjoint and Self-Adjoint Operators
  4.5  lnvertible, Normal, Isometric,and Unitary Operators
  4.6  Positive Operators
  4.7  Projection Operators
  4.8  Compact Operators
  4.9  Eigenvalues and Eigenvectors
  4.10  Spectral Decomposition
  4.11  Unbounded Operators
  4.12  Exercises

CHAPTER 5  Applications to Integral and Differential Equations ETЯA?D
  5.1  Introduction
  5.2  Basic Existence Theorems
  5.3  Fredholm Integral Equations
  5.4  Method of Successive Approximations
  5.5  Volterra Integral Equations
  5.6  Method of Solution for a Separable Kernel
  5.7  Volterra Integral Equations of the First Kind and Abel's Integral Equation
  5.8  Ordinary Differential Equations and Differential Operators
  5.9  Sturm-Liouville Systems
  5.10  lnverse Differential Operators and Green's Functions
  5.11  The Fourier Transformnс
  5.12  Applications of the Fourier Transform to Ordinary Differential Equations and Integral Equations
  5.13  Exercises
CHAPTER 6  Generalized Functions and Partial Differential Equations
  6.1  Introduction
  6.2  Distributions
  6.3  Sobolev Spaces
  6.4  Fundamental Solutions and Green's Functions for Partial Differential Equations
  6.5  Weak Solutions of Elliptic Boundary Value Problems
  6.6  Examples of Applications of the Fourier Transform to Partial Differential Equations
  6.7  Exercises
CHAPTER 7  Mathematical Foundations of Quantum MechanicsEITRAHO
  7.1  Introduction
  7.2  Basic Concepts and Equations of Classical Mechanics
    Poisson's Brackets in Mechanics
  7.3  Basic Concepts and Postulates of Quantum Mechanics
  7.4  The Heisenberg Uncertainty Principle
  7.5  The Schrodinger Equation of Motion
  7.6  The Schrodinger Picture
  7.7  The Heisenberg Picture and the Heisenberg Equation of Motion
  7.8  The Interaction Picture
  7.9  The Linear Harmonic Oscillator
  7.10  Angular Momentum Operators
  7.11  The Dirac Relativistic Wave Equation A
  7.12  Exercises mAI
CHAPTER 8  Wavelets and Wavelet Transforms
  8.1  Brief Historical Remarks
  8.2  Continuous Wavelet Transformsnhantal
  8.3  The Discrete Wavelet Transform
  8.4  Multiresolution Analysis and Orthonormal Bases of Wavelets
  8.5  Examples of Orthonormal Wavelets
  8.6  Exercises
CHAPTER 9  Optimization Problems and Other Miscellaneous Applications
  9.1  Introduction
  9.2  The Gateaux and Fr?chet Differentials
  9.3  Optimization Problems and the Euler-Lagrange Equations
  9.4  Minimization of Quadratic Functionals
  9.5  Variational Inequalities
  9.6  Optimal Control Problems for Dynamical Systems

  9.7  Approximation Theory
  9.8  The Shannon Sampling Theorem
  9.9  Linear and Nonlinear Stability
  9.10  Bifurcation Theory
  9.11  Exercises
Hints and Answers to Selected Exercises
Bibliography
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032