幫助中心 | 我的帳號 | 關於我們

博弈論最新進展--新均衡多矩陣博弈及計算方法(英文版)

  • 作者:(蒙)R.恩科巴圖//薩和雅//S.巴特比勒格//G.巴特圖爾
  • 出版社:科學
  • ISBN:9787030823007
  • 出版日期:2025/01/01
  • 裝幀:平裝
  • 頁數:196
人民幣:RMB 98 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書的目的是在研究生層面提供博弈論的最新全面、嚴謹的結果。本書旨在向讀者介紹計算遊戲均衡的優化方法和演算法。作者假設讀者熟悉博弈論、數學規劃、優化和非凸優化的基本概念。我們打算這本書也用於研究生階段工程、運籌學、電腦科學和數學系提供的優化、博弈論課程。由於這本書涉及了許多在早期優化教科書中沒有描述的計算平衡的新演算法和想法,我們希望這本書不僅對博弈論專家有用,而且對優化研究人員也有用。除了納什均衡、伯傑均衡、非合作博弈等經典主題外,一些重要的最近的發展包括:最大最小和最小最大問題、反納什、反伯傑均衡、多矩陣博弈、廣義納什均衡、計算方法和演算法。

作者介紹
(蒙)R.恩科巴圖//薩和雅//S.巴特比勒格//G.巴特圖爾

目錄
Preface
Chapter1 Introduction
Chapter2 Zero-Sum Game
  2.1  Two-person zero-sumgame
  2.2  Minimax and maxmin
  2.3  Saddle point
  2.4  Matrixgamein pure strategies
  2.5  Matrixgamein mixed strategies
  2.6  Reductionofgame theoryto linear programming
Chapter3 Maxmin and MinimaxProblems
  3.1  Maxmin problem
  3.2  Optimality conditionsfor maxmin problem
  3.3  Optimality conditions for minimax problem
Chapter4 Non-Zero Sum Game
  4.1  Two-person non-zero sumgame
    4.1.1  Bimatrixgame
    4.1.2  Nash equilibrium
    4.1.3  Berge equilibrium
  4.2  Non-zero sum three-persongame
  4.3  Non-zero sum four-persongame
  4.4  Non-zero sum n-persongame
Chapter5 Anti-Nash and Anti-Berge Equilibriumin Bimatrix Game
  5.1  Anti-Nash equilibriumin bimatrixgame
  5.2  Anti-Berge equilibriumin bimatrixgame
Chapter6 Polymatrix Game
  6.1  Three-sidedgame
    6.1.1  Main propertiesof thegame Γ(A, B,C)
    6.1.2  Optimization formulationof three-sidedgame
  6.2  Four-players triplegame
  6.3  Game of N-players
    6.3.1  Nash theorem and the optimization problem
Chapter7 N-Players Non-Cooperative Games
  7.1  Non-cooperativegames
  7.2  Generalized Nash equilibrium problems
  7.3  Someequivalent approachto generalizedNash equilibrium problems
    7.3.1  Variational inequality approach
    7.3.2  Nikaido-Isoda function based approach
    7.3.3  Karush-Kuhn-Tucker conditions approach
  7.4  Global optimization D.Capproach to quadratic nonconvex generalized Nash equilibrium problems
    7.4.1  Generalized Nash equilibrium problem and equivalent optimization formulation
    7.4.2  Quadratic nonconvexgame andgap function
    7.4.3  D.Coptimization approachto non-cooperativegame
  7.5  Generalized Nash equilibrium problem based on Malfatti』s problem
    7.5.1  Malfatti』s problemand convex maximization
    7.5.2  Generalized Nash equilibrium problems
  7.6  Aglobal optimization approach to Berge equilibrium based on a regularized function
    7.6.1  Existence of Berge equilibrium and constrained optimization reformulations 110 Chapter8 Game Theory and Hamiltonian
System
  8.1  Hamiltonian system
  8.2  Evolutionarygames and Hamiltonian systems.

  8.3  Optimal controltheoryandthe Hamiltonian operator
  8.4  Differentialgames and the Hamilton-Jacobi-Bellman (HJB) Principle
    8.4.1  The relationship betweengame theoryandthe Hamiltonian operator
    8.4.2  Two-person zero-sum differentialgames
    8.4.3  Two-person non-zero sum differentialgames
Chapter9 Computational Methods and Algorithmsfor Matrix Game
  9.1  D.Cprogramming approachtoBerge equilibrium
    9.1.1  Local search method
    9.1.2  Global search method
    9.1.3  Numerical results for D.Cprogramming approach to Berge equilibrium
  9.2  Global search method curvilinear algorithm forgame
    9.2.1  The curvilinear global search algorithm
    9.2.2  Numerical results for three-persongame
    9.2.3  Numerical results for four-persongame
    9.2.4  Numerical results N-persongame
  9.3  The numerical approach for anti-Nash equilibrium search
    9.3.1  The modi.ed Rosenbrock algorithm
    9.3.2  Theunivariate global search procedure
    9.3.3  Numerical results for anti-Nash equilibriumby Rosenbrock algorithm
  9.4  Modi.ed parallel tangent algorithm for anti-Berge equilibrium
    9.4.1  The modi.ed parallel tangent algorithm
    9.4.2  Theunivariate global search procedure
    9.4.3  Numerical results for anti-Berge equilibrium by modi.ed tangent algorithm
  9.5  The curvilinear multistart algorithmfor polymatrixgame
    9.5.1  Numericalexperimentof polymatrixgame
  9.6  Numerical resultsfor non-cooperativegame
  9.7  Numerical resultsforMalfati』s problem
Bibliography

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032