幫助中心 | 我的帳號 | 關於我們

現代控制理論基礎(英文版高等學校電氣工程與自動化專業系列教材)

  • 作者:編者:滕青芳//董海鷹//魏文軍|責編:趙凱
  • 出版社:清華大學
  • ISBN:9787302687986
  • 出版日期:2025/05/01
  • 裝幀:平裝
  • 頁數:258
人民幣:RMB 79 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書以狀態空間法為核心,闡述了現代控制理論的基本原理及其分析和綜合方法。全書共有6章,包含線性系統的狀態空間描述、線性系統的運動分析、線性系統的能控性和能觀性、李雅普諾夫穩定性分析,線性系統的狀態綜合。本書是作者根據我國現代控制理論課程教學要求、大量參考國際優秀原版教材,並總結近年來該課程雙語教學實踐經驗的基礎上編寫的。
    本書可作為高等院校自動化、電氣工程及其自動化等控制類專業的現代控制理論雙語教學教材,也可作為相關工程技術人員的參考書。

作者介紹
編者:滕青芳//董海鷹//魏文軍|責編:趙凱

目錄
Chapter 1 Introduction to Control Systems
  1.1  Historical Review of Automatic Control Theory
  1.2  Modern Control Theory versus Conventional Control Theory
    1.2.1  Modern control theory
    1.2.2  Modern control theory versus conventional control theory
    1.2.3  Definitions
  1.3  Design of Control Systems
  1.4  Future Evolution of Control Systems
  1.5  Outline of this Book
Chapter 2 Modeling In State Space
  2.1  State Variable and State Space Expression
    2.1.1  Some basic concept and definitions
    2.1.2  State space expression
    2.1.3  Relationship between transfer functions (or transfer matrix) and state - space equations
  2.2  State Space Representation of Linear Dynamic System
    2.2.1  State space representation of differential equation
    2.2.2  From transfer function to state space representation
  2.3  From Block Diagram to State Space Representation
  2.4  Linear Transform of State Space Expression
    2.4.1  Nonsingular linear transform (or similarity transformation)
    2.4.2  Eigenvalues and eigenvectors of an n×n matrix A
    2.4.3  State - space representation in canonical forms
  2.5  State Space Representations of Discrete Systems
    2.5.1  State - space representation of nth - order systems of linear difference equations in which the forcing function does not
involve difference terms
    2.5.2  State space representation of nth - order systems of linear difference equations in which the forcing function involves
difference terms
  2.6  Transformation of System Models with MATLAB
    2.6.1  Transformation from transfer function to state space formulation
    2.6.2  Transformation from state space to transfer function
Exercises
Chapter 3 Dynamic Analysis of Control System in State Space
  3.1  Solving the Time - invariant Homogeneous State Equation
    3.1.1  General solution of the scalar differential equation
    3.1.2  General solution of the vector - matrix differential equation
    3.1.3  State - transition matrix
  3.2  Properties of State - transition Matrice
  3.3  Calculation of Matrix Exponential Function
    3.3.1  Direct calculation approach
    3.3.2  Laplace transform approach
    3.3.3  Linear transform approach
    3.3.4  Cayley - Hamilton Theorem
  3.4  Solution of Nonhomogeneous State Equations
    3.4.1  Direct method (or integral method)
    3.4.2  Laplace Transform Approach
  3.5  Solution of Discrete Nonhomogeneous State Equations
    3.5.1  Discretization of linear time - invariant dynamic equation
    3.5.2  Approximation
    3.5.3  Recursive algorithms of the discrete state equation
    3.5.4  Z transform approach to the solution of the discrete state equation

  3.6  Computation of Control System Response with MATLAB
    3.6.1  Response to initial condition
    3.6.2  Obtaining the response to an initial condition by use of the command initial
Exercises
Chapter 4 Controllability and Observability
  4.1  Controllability of Linear Time - invariant Continuous System
    4.1.1  Definition of controllability
    4.1.2  Complete controllability criteria of continuous - time systems
    4.1.3  Complete output controllability of continuous - time systems
  4.2  Observability of Linear Time - invariant Continuous System
    4.2.1  Definition of observability
    4.2.2  Complete observability criteria of continuous - time systems
  4.3  Controllable Canonical Form and Observable Canonical Form
    4.3.1  Controllable canonical form of the single input system
    4.3.2  Observable canonical form of the single output system
  4.4  Principle of Duality
    4.4.1  Dual system
    4.4.2  Principle of duality
  4.5  Controllability and Observability of Discrete Time - Invariant System
    4.5.1  Controllability of discrete system
    4.5.2  Observability of discrete system
    4.5.3  Controllability and Observability of Discretized Systems
  4.6  Structure Decomposition of Linear Time - invariant Continuous System
    4.6.1  Structure decomposition according to controllability
    4.6.2  Structure decomposition according to observability
    4.6.3  Structure decomposition according to both controllability and observability
  4.7  Computation of Controllability and Observability Matrix with MATLAB
Exercises
Chapter 5 Lyapunov Stability Analysis
  5.1  Stability of Lyapunov Significance
    5.1.1  Equilibrium state
    5.1.2  Stability in the sense of Lyapunov
    5.1.3  Asymptotic stability in a whole
    5.1.4  Unstability
  5.2  Definiteness of Scalar Function and Sylvester Theorem
    5.2.1  Positive definite and semidefinite functions
    5.2.2  Negative definite and semidefinite functions
    5.2.3  Indefinite functions
    5.2.4  Quadratic function
    5.2.5  Sylvester theorem
  5.3  Main Theorems of Lyapunov's Second Method
    5.3.1  Lyapunov stability for time - varying system
    5.3.2  Lyapunov stability for time - invariant system
    5.3.3  Lyapunov stability for time - varying or time - invariant system
    5.3.4  Instability for time - varying or time - invariant system
  5.4  Stability Criteria for Linear Time - Invariant Systems
    5.4.1  Basic theorem
    5.4.2  Lyapunov function of linear time - invariant continuous systems
    5.4.3  Lyapunov function of linear time - invariant discrete systems
Exercises

Chapter 6 Design of Control Systems in State Space
  6.1  State Feedback and Output Feedback
    6.1.1  State feedback
    6.1.2  Output feedback
    6.1.3  Controllability and observability of state feedback system
  6.2  Pole Placement
    6.2.1  Design by state feedback
    6.2.2  Necessary and sufficient condition for arbitrary pole placement
    6.2.3  Determination of state feedback matrix K
    6.2.4  Choosing the locations of desired closed - loop poles
    6.2.5  Comments on selecting state feedback gain matrix K
  6.3  Stabilization Problem of Systems
  6.4  Solving Pole Placement Problems with MATLAB
  6.5  State Observers
    6.5.1  Full - order state observer
    6.5.2  Necessary and sufficient condition for full - order state observer
    6.5.3  Determination of full - order state observer gain matrix Kc
    6.5.4  Comments on selecting state observer gain matrix Kc
    6.5.5  Integrated full - state feedback and observer
    6.5.6  Separation property
    6.5.7  Reference inputs for integrated full - state feedback and observer
    6.5.8  Reduced - dimension state observer
  6.6  Design of State Observers with MATLAB
  6.7  Optimal Control Design
    6.7.1  Optimal control design using error - squared performance indices
    6.7.2  Optimal control design using riccati equation
  6.8  Solving Quadratic Optimal Control Problems with MATLAB
  6.9  Internal Model Design
    6.9.1  Internal model design for tracking of a step input
    6.9.2  Internal model design for tracking of a ramp input
Exercises
References

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032