幫助中心 | 我的帳號 | 關於我們

統計力學(第4版)(英文版)

  • 作者:(美)拉傑·帕斯里亞//保羅·比爾|責編:王藝霖//陳亮
  • 出版社:世圖出版公司
  • ISBN:9787523218587
  • 出版日期:2025/04/01
  • 裝幀:平裝
  • 頁數:738
人民幣:RMB 139 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是統計力學課程的教材,第一版于1972年出版,至今已有五十多年的時間。本書是于2022年出版的第四版。本書共16章。第1章至第9章屬於統計力學的基礎知識。包括熱力學的統計基礎、系綜理論的基本原理、正則系綜、巨正則系綜、量子統計學的表述形式、簡單氣體理論、理想玻色系統和理想費米系統,以及早期宇宙熱力學;第10章至第15章的內容難度相對較高,包括相互作用系統的統計力學:集團展開法和量子場方法,漲落和非平衡統計力學,以及相變和臨界現象的相關主題;最後一章則介紹了電腦模擬。此外在正文開始之前作者還增加了統計力學的歷史介紹,能夠滿足對這部分歷史感興趣的讀者。

作者介紹
(美)拉傑·帕斯里亞//保羅·比爾|責編:王藝霖//陳亮

目錄
Preface to the fourth edition
Preface to the third edition
Preface to the second edition
Preface to the first edition
Historical introduction
1. The statistical basis of thermodynamics
  1.1  The macroscopic and the microscopic states
  1.2  Contact between statistics and thermodynamics :physical significance of the number Ω(N, V, E)
  1.3  Further contact between statistics and thermodynamics
  1.4  The classical ideal gas
  1.5  The entropy of mixing and the Gibbs paradox
  1.6  The 「correct" enumeration of the microstates
  Problems
2. Elements of ensemble theory
  2.1  Phase space of a classical system
  2.2  Liouville's theorem and its consequences
  2.3  The microcanonical ensemble
  2.4  Examples
  2.5  Quantum states and the phase space
  Problems
3.The canonical ensemble
  3.1  Equilibrium between a system and a heat reservoir
  3.2  A system in the canonical ensemble
  3.3  Physical significance of the various statistical quantities in the canonical ensemble
  3.4  Alternative expressions for the partition function
  3.5  The classical systems
  3.6  Energy fluctuations in the canonical ensemble: correspondence with the microcanonical ensemble
  3.7  Two theorems-the 「equipartition" and the 「virial
  3.8  A system of harmonic oscillators
  3.9  The statistics of paramagnetism
  3.10  Thermodynamics of magnetic systems: negative temperatures
  Problems
4. The grand canonical ensemble
  4.1  Equilibrium between a system and a particle-energy reservoir
  4.2  A system in the grand canonical ensemble
  4.3  Physical significance of the various statistical quantities
  4.4  Examples
  4.5  Density and energy fluctuations in the grand canonical ensemble: correspondence with other ensembles
  4.6  Thermodynamic phase diagrams
  4.7  Phase equilibrium and the Clausius-Clapeyron equation
  Problems
5. Formulation of quantum statistics
  5.1  Quantum-mechanical ensemble theory: the density matrix
  5.2  Statistics of the various ensembles
  5.3  Examples
  5.4  Systems composed of indistinguishable particles
  5.5  The density matrix and the partition function of a system of free particles
  5.6  Eigenstate thermalization hypothesis
  Problems
6. The theory of simple gases

  6.1  An ideal gas in a quantum-mechanical microcanonical ensemble
  6.2  An ideal gas in other quantum-mechanical ensembles
  6.3  Statistics of the occupation numbers
  6.4  Kinetic considerations
  6.5  Gaseous systems composed of molecules with internal motion
  6.6  Chemical equilibrium
  Problems
7. ldeal Bose systems
  7.1  Thermodynamic behavior of an ideal Bose gas
  7.2  Bose-Einstein condensation in ultracold atomic gases
  7.3  Thermodynamics of the blackbody radiation
  7.4  The field of sound waves
  7.5  Inertial density of the sound field
  7.6  Elementary excitations in liquid helium II
  Problems
8. ldeal Fermi systems
  8.1  Thermodynamic behavior of an ideal Fermi gas
  8.2  Magnetic behavior of an ideal Fermi gas
  8.3  The electron gas in metals
  8.4  Ultracold atomic Fermi gases
  8.5  Statistical equilibrium of white dwarf stars
  8.6  Statistical model of the atom
  Problems
9. Thermodynamics of the early universe
  9.1  Observational evidence of the Big Bang
  9.2  Evolution of the temperature of the universe
  9.3  Relativistic electrons, positrons, and neutrinos
  9.4  Neutron fraction
  9.5  Annihilation of the positrons and electrons
  9.6  Neutrino temperature
  9.7  Primordial nucleosynthesis
  9.8  Recombination
  9.9  Epilogue
  Problems
10.Statistical mechanics of interacting systems: the method of cluster expansions
  10.1  Cluster expansion for a classical gas
  10.2  Virial expansion of the equation of state
  10.3  Evaluation of the virial coeffcients
  10.4  General remarks on cluster expansions
  10.5  Exact treatment of the second virial coeffcient
  10.6  Cluster expansion for a quantum-mechanical system
  10.7  Correlations and scattering
  Problems
11. Statistical mechanics of interacting systems: the method of quantized fields
  11.1  The formalism of second quantization
  11.2  Low-temperature behavior of an imperfect Bose gas
  11.3  Low-lying states of an imperfect Bose gas
  11.4  Energy spectrum of a Bose liquid
  11.5  States with quantized circulation
  11.6  Quantized vortex rings and the breakdown of superfluidity

  11.7  Low-lying states of an imperfect Fermi gas
  11.8  Energy spectrum of a Fermi liquid: Landau's phenomenological theory
  11.9  Condensation in Fermi systems
  Problems
12. Phase transitions: criticality, universality, and scaling
  12.1  General remarks on the problem of condensation
  12.2  Condensation of a van der Waals gas
  12.3  A dynamical model of phase transitions
  12.4  The lattice gas and the binary alloy
  12.5  Ising model in the zeroth approximation
  12.6  Ising model in the first approximation
  12.7  The critical exponents
  12.8  Thermodynamic inequalities
  12.9  Landau's phenomenological theory
  12.10  Scaling hypothesis for thermodynamic functions
  12.11  The role of correlations and fluctuations
  12.12  The critical exponents ν and η
  12.13  A final look at the mean field theory
  Problems
13. Phase transitions: exact (or almost exact) results for various models
  13.1  One-dimensional fluid models
  13.2  The Ising model in one dimension
  13.3  The n-vector models in one dimension
  13.4  The Ising model in two dimensions
  13.5  The spherical model in arbitrary dimensions
  13.6  The ideal Bose gas in arbitrary dimensions
  13.7  Other models
  Problems
14. Phase transitions: the renormalization group approach
  14.1  The conceptual basis of scaling
  14.2  Some simple examples of renormalization
  14.3  The renormalization group: general formulation
  14.4  Applications of the renormalization group
  14.5  Finite-size scaling
  Problems
15. Fluctuations and nonequilibrium statistical mechanics
  15.1  Equilibrium thermodynamic fluctuations
  15.2  The Einstein-Smoluchowski theory of the Brownian motion
  15.3  The Langevin theory of the Brownian motion
  15.4  Approach to equilibrium: the Fokker-Planck equation
  15.5  Spectral analysis of fluctuations: the Wiener-Khintchine theorem
  15.6  The fluctuation-dissipation theorem
  15.7  The Onsager relations
  15.8  Exact equilibrium free energy differences from nonequilibrium measurements
16. Computer Simulations
  16.1  Introduction and statistics
  16.2  Monte Carlo simulations
  16.3  Molecular dynamics16.3.
  16.4  Particle simulations
  16.5  Computer simulation caveats

   Problems
Appendices
  A. Influence of boundary conditions on the distribution of quantum states
  B. Certain mathematical functions
  C. 「Volume」 and 「surface area」 of an n-dimensional sphere of radius R
  D. On Bose-Einstein functions
  E. On Fermi-Dirac functions
  F. A rigorous analysis of the ideal Bose gas and the onset of Bose-Einstein condensation
  G. On Watson functions
  H. Thermodynamic relationships
  I. Pseudorandom numbers
Bibliography
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032