幫助中心 | 我的帳號 | 關於我們

非線性光學(第4版)(英文版)

  • 作者:(美)羅伯特·博伊德|責編:王藝霖//陳亮
  • 出版社:世圖出版公司
  • ISBN:9787523218563
  • 出版日期:2025/04/01
  • 裝幀:平裝
  • 頁數:609
人民幣:RMB 129 元      售價:
放入購物車
加入收藏夾

內容大鋼
    非線性光學是一門研究強激光與物質相互作用的學科。羅伯特·博伊德教授所著的這本《非線性光學》是一本非線性光學教科書,適合初學的研究生閱讀。本書旨在介紹非線性光學領域的基本概念,使學生能夠在這一領域開展獨立研究。作者在羅切斯特大學的課程中成功地使用了本書的第一個版本。參加該課程的學生通常從高年級學生到高年級博士生不等,其學科包括光學、物理、化學、電子工程、機械工程和化學工程等。本書可用於非線性光學、量子光學、量子電子學、激光物理學、電子光學和現代光學等領域的研究生課程。通過刪除一些較難的章節,本書也適合高年級本科生使用;另一方面,書中的一些內容相當高深,不僅適合高年級研究生使用,而且可以作為科學家的工具書。

作者介紹
(美)羅伯特·博伊德|責編:王藝霖//陳亮

目錄
Preface to the Fourth Edition
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Chapter 1: The Nonlinear Optical Susceptibility
  1.1  Introduction to Nonlinear Optics
  1.2  Descriptions of Nonlinear Optical Processes
    1.2.1  Second-Harmonic Generation
    1.2.2  Sum- and Difference-Frequency Generation
  1.2  3 Sum-Frequency Generation
    1.2.4  Difference-Frequency Generation
    1.2.5  Optical Parametric Oscillations
    1.2.6  Third-Order Nonlinear Optical Processes
    1.2.7  Third-Harmonic Generation
    1.2.8  Intensity-Dependent Refractive Index
    1.2.9  Third-Order Interactions (General Case)
    1.2.10  Parametric versus Nonparametric Processes
    1.2.11  Saturable Absorption
    1.2.12  Two-Photon Absorption
    1.2.13  Stimulated Raman Scattering
  1.3  Formal Definition of the Nonlinear Susceptibility
  1.4  Nonlinear Susceptibility of a Classical Anharmonic Oscillator
    1.4.1  Noncentrosymmetric Media
    1.4.2  Miller's Rule
    1.4.3  Centrosymmetric Media
  1.5  Properties of the Nonlinear Susceptibility
    1.5.1  Reality of the Fields
    1.5.2  Intrinsic Permutation Symmetry
    1.5.3  Symmetries for Lossless Media
    1.5.4  Field Energy Density for a Nonlinear Medium
    1.5.5  Kleinman's Symmetry
    1.5.6  Contracted Notation
    1.5.7  Effective Value of d (deff)
    1.5.8  Spatial Symmetry of the Nonlinear Medium
    1.5.9  Influence of Spatial Symmetry on the Linear Optical Properties of a Material Medium
    1.5.10  Influence of Inversion Symmetry on the Nonlinear Second-Order Response
    1.5.11  Influence of Spatial Symmetry on the Second-Order Susceptibility
    1.5.12  Number of Independent Elements of xijk(2) (ω3, ω2,ω1)
    1.5.13  Distinction between Noncentrosymmetric and Cubic Crystal Classes
    1.5.14  Distinction between Noncentrosymmetric and Polar Crystal Classes
    1.5.15  Influence of Spatial Symmetry on the Third-Order Nonlinear Response
  1.6  Time-Domain Description of Optical Nonlinearities
  1.7  Kramers-Kronig Relations in Linear and Nonlinear Optics
    1.7.1  Kramers-Kronig Relations in Linear Optics
    1.7.2  Kramers-Kronig Relations in Nonlinear Optics
  Problems
  References
Chapter 2: Wave-Equation Description of Nonlinear Optical Interactions
  2.1  The Wave Equation for Nonlinear Optical Media
  2.2  The Coupled-Wave Equations for Sum-Frequency Generation

    2.2.1  Phase-Matching Considerations
  2.3  Phase Matching
  2.4  Quasi-Phase-Matching (QPM)
  2.5  The Manley-Rowe Relations
  2.6  Sum-Frequency Generation
  2.7  Second-Harmonic Generation
    2.7.1  Applications of Second-Harmonic Generation
  2.8  Difference-Frequency Generation and Parametric Amplification
  2.9  Optical Parametric Oscillators
    2.9.1  Influence of Cavity Mode Structure on OPO Tuning
  2.10  Nonlinear Optical Interactions with Focused Gaussian Beams
    2.10.1  Paraxial Wave Equation
    2.10.2  Gaussian Beams
    2.10.3  Harmonic Generation Using Focused Gaussian Beams
  2.11  Nonlinear Optics at an Interface
  2.12  Advanced Phase Matching Method
  Problems
  References
Chapter 3: Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility
  3.1  Introduction
  3.2  Schrodinger Equation Calculation of the Nonlinear Optical Susceptibility
    3.2.1  Energy Eigenstates
    3.2.2  Perturbation Solution to Schr?dinger's Equation
    3.2.3  Linear Susceptibility
    3.2.4  Second-Order Susceptibility
    3.2.5  Third-Order Susceptibility
    3.2.6  Third-Harmonic Generation in Alkali Metal Vapors
  3.3  Density Matrix Formulation of Quantum Mechanics
    3.3.1  Example: Two-Level Atom
  3.4  Perturbation Solution of the Density Matrix Equation of Motion
  3.5  Density Matrix Calculation of the Linear Susceptibility
    3.5.1  Linear Response Theory
  3.6  Density Matrix Calculation of the Second-Order Susceptibility
    3.6.1  χ(2) in the Limit of Nonresonant Excitation
  3.7  Density Matrix Calculation of the Third-Order Susceptibility
  3.8  Electromagnetically Induced Transparency
  3.9  Local-Field Effects in the Nonlinear Optics
    3.9.1  Local-Field Effects in Linear Optics
    3.9.2  Local-Field Effects in Nonlinear Optics
  Problems
  References
Chapter 4: The Intensity-Dependent Refractive Index
  4.1  Descriptions of the Intensity-Dependent Refractive Index
  4.2  Tensor Nature of the Third-Order Susceptibility
    4.2.1  Propagation through Isotropic Nonlinear
  4.3  Nonresonant Electronic Nonlinearities
    4.3.1  Classical, Anharmonic Oscillator Model of Electronic Nonlinearities
    4.3.2  Quantum-Mechanical Model of Nonresonant Electronic Nonlinearities
    4.3.3  χ(3) in the Low-Frequency Limit
  4.4  Nonlinearities Due to Molecular Orientation

    4.4.1  Tensor Properties of χ(3) for the Molecular Orientation Effect
  4.5  Thermal Nonlinear Optical Effects
    4.5.1  Thermal Nonlinearities with Continuous-Wave Laser Beams
    4.5.2  Thermal Nonlinearities with Pulsed Laser Beams
  4.6  Semiconductor Nonlinearities
    4.6.1  Nonlinearities Resulting from Band-to-Band Transitions
    4.6.2  Nonlinearities Involving Virtual Transitions
  4.7  Concluding Remarks
  Problems
  Reference
Chapter 5: Molecular Origin of the Nonlinear Optical Response
  5.1  Nonlinear Susceptibilities Calculated Using Time-Independent Perturbationin
    5.1.1  Hydrogen Atom
    5.1.2  General Expression for the Nonlinear Susceptibility in the Quasi-Static Timit
  5.2  Semiempirical Models of the Nonlinear Optical Susceptibility
    Model of Boling, Glass, and Owyoung
  5.3  Nonlinear Optical Properties of Conjugated Polymers
  5.4  Bond-Charge Model of Nonlinear Optical Properties
  5.5  Nonlinear Optics of Chiral Media
  5.6  Nonlinear Optics of Liquid Crystals
  Problems
  References
Chapter 6: Nonlinear Optics in the Two-Level Approximation
  6.1  Introduction
  6.2  Density Matrix Equations of Motion for a Two-Level Atom
    6.2.1  Closed Two-Level Atom
    6.2.2  Open Two-Level Atom
    6.2.3  Two-Level Atom with a Non-Radiatively Coupled Third Level
  6.3  Steady-State Response of a Two-Level Atom to a Monochromatic Field
  6.4  Optical Bloch Equations
    6.4.1  Harmonic Oscillator Form of the Density Matrix Equation
    6.4.2  Adiabatic-Following Limit
  6.5  Rabi Oscillations and Dressed Atomic States
    6.5.1  Rabi Solution of the Schr?dinger Equation
    6.5.2  Solution for an Atom Initially in the Ground State
    6.5.3  Dressed States
    6.5.4  Inclusion of Relaxation Phenomena
  6.6  Optical Wave Mixing in Two-Level Systems
    6.6.1  Solution of the Density Matrix Equations for a Two-Level Atom in the Presence of Pump and Probe Fields
    6.6.2  Nonlinear Susceptibility and Coupled-Amplitude Equations
  Problems
  References
Chapter 7: Processes Resulting from the Intensity-Dependent Refractive Index
  7.1  Self-Focusing of Light and Other Self-Action Effects
    7.1.1  Self-Trapping of Light
    7.1.2  Mathematical Description of Self-Action Effects
    7.1.3  Laser Beam Breakup into Many Filaments
    7.1.4  Self-Action Effects with Pulsed Laser Beam
  7.2  Optical Phase Conjugation
    7.2.1  Aberration Correction by Phase Conjugation

    7.2.2  Phase Conjugation by Degenerate Four-Wave Mixing
    7.2.3  Polarization Properties of Phase Conjugation
  7.3  Optical Bistability and Optical Switchin
    7.3.1  Absorptive Bistability
    7.3.2  Refractive Bistabilit
    7.3.3  Optical Switching
  7.4  Two-Beam Coupling
  7.5  Pulse Propagation and Temporal Soliton
    7.5.1  Self-Phase Modulation
    7.5.2  Pulse Propagation Equation
    7.5.3  Temporal Optical Soliton
  Problems
  References
Chapter 8: Spontaneous Light Scattering and Acoustooptics
  8.1  Features of Spontaneous Light Scattering
    8.1.1  Fluctuations as the Origin of Light Scattering
    8.1.2  Scattering Coeffcient
    8.1.3  Scattering Cross Sectio
  8.2  Microscopic Theory of Light Scattering
  8.3  Thermodynamic Theory of Scalar Light Scattering
    8.3.1  Ideal Gas
    8.3.2  Spectrum of the Scattered Light
    8.3.3  Brillouin Scattering
    8.3.4  Stokes Scattering (First Term in Eq. (8.3.36))
    8.3.5  Anti-Stokes Scattering (Second Term in Eq. (8.3.36))
    8.3.6  Rayleigh Center Scattering
  8.4  Acoustooptics
    8.4.1  Bragg Scattering of Light by Sound Waves
    8.4.2  Raman-Nath Effect
  Problems
  References
Chapter 9: Stimulated Brillouin and Stimulated Rayleigh Scattering
  9.1  Stimulated Scattering Processes
  9.2  Electrostriction
  9.3  Stimulated Brillouin Scattering (Induced by Electrostriction)
    9.3.1  Pump Depletion Effects in SBS
    9.3.2  SBS Generator
    9.3.3  Transient and Dynamical Features of SBS
  9.4  Phase Conjugation by Stimulated Brillouin Scattering
  9.5  Stimulated Brillouin Scattering in Gases
  9.6  General Theory of Stimulated Brillouin and Stimulated Rayleigh Scattering
    9.6.1  Appendix: Definition of the Viscosity Coefficients
  Problems
  References
Chapter 10: Stimulated Raman Scattering and Stimulated Rayleigh-Wing Scattering
  10.1  The Spontaneous Raman Effect
  10.2  Spontaneous versus Stimulated Raman Scattering
  10.3  Stimulated Raman Scattering Described by the Nonlinear Polarization
  10.4  Stokes-Anti-Stokes Coupling in Stimulated Raman Scattering
    10.4.1  Dispersionless, Nonlinear Medium without Gain or Loss

    10.4.2  Medium without a Nonlinearity
    10.4.3  Stokes-Anti-Stokes Coupling in Stimulated Raman Scattering
  10.5  Coherent Anti-Stokes Raman Scattering
  10.6  Stimulated Rayleigh-Wing Scattering
    10.6.1  Polarization Properties of Stimulated Rayleigh-Wing Scatterings
  Problems
  References
Chapter 11: The Electrooptic and Photorefractive Effects
  11.1  Introduction to the Electrooptic Effect
  11.2  Linear Electrooptic Effect
  11.3  Electrooptic Modulators
  11.4  Introduction to the Photorefractive Effect
  11.5  Photorefractive Equations of Kukhtarev et al.
  11.6  Two-Beam Coupling in Photorefractive Materials
  11.7  Four-Wave Mixing in Photorefractive Materials
    11.7.1  Externally Self-Pumped Phase-Conjugate Mirror
    11.7.2  Internally Self-Pumped Phase-Conjugate Mirror
    11.7.3  Double Phase-Conjugate Mirror
    11.7.4  Other Applications of Photorefractive Nonlinear Optics
  Problems
  References
Chapter 12: Optically Induced Damage and Multiphoton Absorption
  12.1  Introduction to Optical Damage
  12.2  Avalanche-Breakdown Model
  12.3  Influence of Laser Pulse Duration
  12.4  Direct Photoionization
  12.5  Multiphoton Absorption and Multiphoton lonization
    12.5.1  Theory of Single- and Multiphoton Absorption and Fermi's Golden Rule
    12.5.2  Linear (One-Photon) Absorption
    12.5.3  Two-Photon Absorption
    12.5.4  Multiphoton Absorption
  Problems
  References
Chapter 13: Ultrafast and Intense-Field Nonlinear Optics
  13.1  Introduction
  13.2  Ultrashort-Pulse Propagation Equation
  13.3  Interpretation of the Ultrashort-Pulse Propagation Equation
    13.3.1  Self-Steepening
    13.3.2  Space-Time Coupling
    13.3.3  Supercontinuum Generation
  13.4  Intense-Field Nonlinear Optics
  13.5  Motion of a Free Electron in a Laser Field
  13.6  High-Harmonic Generation
  13.7  Tunnel Ionization and the Keldysh Model
  13.8  Nonlinear Optics of Plasmas and Relativistic Nonlinear Optics
  13.9  Nonlinear Quantum Electrodynamics
  Problem
  References
Chapter 14: Nonlinear Optics of Plasmonic Systems
  14.1  Introduction to Plasmonics

  14.2  Simple Derivation of the Plasma Frequency
  14.3  The Drude Model
  14.4  Optical Properties of Gold
  14.5  Surface Plasmon Polariton
  14.6  Electric Field Enhancement in Plasmonic Systems
  Problems
  References
Appendices
  Appendix A The SI System of Units
    A.1  Energy Relations and Poynting's Theorem
    A.2  The Wave Equation
    A.3  Boundary Conditions
  Appendix B The Gaussian System of Units
  Appendix C Systems of Units in Nonlinear Optics
    C.1  Conversion between the Systems
  Appendix D Relationship between Intensity and Field Strength
  Appendix E Physical Constants
  References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032