幫助中心 | 我的帳號 | 關於我們

平面代數曲線導引(英文版)(精)/美國數學會經典影印系列

  • 作者:(美)基斯·肯迪格|責編:和靜
  • 出版社:高等教育
  • ISBN:9787040632385
  • 出版日期:2025/02/01
  • 裝幀:精裝
  • 頁數:193
人民幣:RMB 99 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是對平面代數曲線的一個非正式且通俗易懂的介紹,也是代數幾何的一個自然切入點。這本書有一個統一的主題:給曲線足夠的生存空間,美麗的定理就會隨之而來。這本書通過具體的例子和圖片介紹抽象的概念,為讀者提供了對主題的堅實直覺,同時保持了闡述的簡單易懂。它可以作為平面代數曲線本科課程的教材,也可以作為研究生代數幾何的配套教材。數學背景有限的人可以閱讀這本書。這是因為對於數學之外的人來說,對代數幾何的入門需求越來越大,代數幾何在從生物學到化學、機器人到密碼學等領域發揮著越來越大的作用。

作者介紹
(美)基斯·肯迪格|責編:和靜

目錄
Preface
1  A Gallery of Algebraic Curves
  1.1  Curves of Degree One and Two
  1.2  Curves of Degree Three and Higher
  1.3  Six Basic Cubics
  1.4  Some Curves in Polar Coordinates
  1.5  Parametric Curves
  1.6  The Resultant
  1.7  Back to an Example
  1.8  Lissajous Figures
  1.9  Morphing Between Curves
  1.10 Designer Curves
2  Points at Infinity
  2.1  Adjoining Points at Infinity
  2.2  Examples
  2.3  A Basic Picture
  2.4  Basic Definitions
  2.5  Further Examples
3  From Real to Complex
  3.1  Definitions
  3.2  The Idea of Multiplicity; Examples
  3.3  A Reality Check
  3.4  A Factorization Theorem for Polynomials in C [x, y]
  3.5  Local Parametrizations of a Plane Algebraic Curve
  3.6  Definition of Intersection Multiplicity for Two Branches
  3.7  An Example
  3.8  Multiplicity at an Intersection Point of Two Plane Algebraic Curves
  3.9  Intersection Multiplicity Without Parametrizations
  3.10 B6zout's theorem
  3.11 B6zout's theorem Generalizes the Fundamental Theorem of Algebra
  3.12 An Application of B6zout's theorem: Pascal's theorem
4  Topology of Algebraic Curves in ]?2(C)
  4.1  Introduction
  4.2  Connectedness
  4.3  Algebraic Curves are Connected
  4.4  Orientable Two-Manifolds
  4.5  Nonsingular Curves are Two-Manifolds
  4.6  Algebraic Curves are Orientable
  4.7  The Genus Formula
5  Singularities
  5.1  Introduction
  5.2  Definitions and Examples
  5.3  Singularities at Infinity
  5.4  Nonsingular Projective Curves
  5.5  Singularities and Polynomial Degree
  5.6  Singularities and Genus
  5.7  A More General Genus Formula
  5.8  Non-Ordinary Singularities
  5.9  Further Examples
  5.10 Singularities versus Doing Math on Curves

  5.11 The Function Field of an Irreducible Curve
  5.12 Birational Equivalence
  5.13 Examples of Birational Equivalence
  5.14 Space-Curve Models
  5.15 Resolving a Higher-Order Ordinary Singularity
  5.16 Examples of Resolving an Ordinary Singularity
  5.17 Resolving Several Ordinary Singularities
  5.18 Quadratic Transformations
6  The Big Three: C, K, S
  6.1  Function Fields
  6.2  Compact Riemann Surfaces
  6.3  Projective Plane Curves
  6.4  fl, f2, f: Curves and Function Fields
  6.5  gl, g2, g: Compact Riemann Surfaces and Curves
  6.6  h 1, h2, h: Function Fields and Compact Riemann Surfaces
  6.7  Genus
  6.8  Genus 0
  6.9  Genus One
  6.10 An Analogy
  6.11 Equipotentials and Streamlines
  6.12 Differentials Generate Vector Fields
  6.13 A Major Difference
  6.14 Divisors
  6.15 The Riemann-Roch theorem
Bibliography
Index
About the Author

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032