幫助中心 | 我的帳號 | 關於我們

物理科學中的奇異攝動(英文版)(精)/美國數學會經典影印系列

  • 作者:(美)約翰·諾伊|責編:吳曉麗
  • 出版社:高等教育
  • ISBN:9787040632491
  • 出版日期:2025/02/01
  • 裝幀:精裝
  • 頁數:326
人民幣:RMB 135 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是《美國數學會經典影印系列》中的一本,美國數學會的出版物在國際數學界享有很高聲譽,出版了很多影響廣泛的數學書。「十四五」期間計劃引進的該學會的圖書系列涵蓋了代數、幾何、分析、方程、拓撲、概率、動力系統等所有主要數學分支以及新近發展的數學主題。本書是近似計算領域的經典著作,適合對計算相關方向感興趣的研究生和數學科研人員參考使用。本書是美國數學會出版的數學類經典學術著作。作者是世界知名數學專家,具有較高的學術水平。

作者介紹
(美)約翰·諾伊|責編:吳曉麗

目錄
Acknowledgments
Introduction
Chapter 1. What is a singular perturbation
  Prototypical examples
    Singularly perturbed polynomial equations
    Radiation reaction
    Problem 1.1  : Bad truncations
    Problem 1.2  : Harmonic oscillator with memory, and even worse truncations
      Convection-diffusion boundary layer
    Problem 1.3  : A simple boundary layer
    Problem 1.4  : Pileup near x
      Modulated oscillationsi etg
    Problem 1.5  : Secular terms
    Problem 1.6  : Approach to limit cycle
    Problem 1.7  : Adiabatic invariant for particle in a box
      Guide to bibliography
Chapter 2. Asymptotic expansions
    Problem 2.1  : Uniqueness
      A divergent but asymptotic seriesyb
    Problem 2.2  : Divergent outer expansion volle
    Problem 2.3  : Another outrageous example
      Asymptotic expansions of integrals - the usual suspects
    Problem 2.4  : Simple endpoint exampleswsk
    Problem 2.5  : Stirling approximation to n
    Problem 2.6  : Endpoint and minimum both contribute
    Problem 2.7  : Central limit theorem
      Steepest descent method
      Chasing the waves with velocity>0
      No waves for v<0
    Problem 2.8  : Steepest descent asymptotics
      A primer on linear waves
    Problem 2.9  : Amplitude transport
    Problem 2.10  : How far was that meteor
    Problem 2.11  : Wave asymptotics in non-uniform medium
      A hard logarithmic expansion
    Problem 2.12  : Logarithmic expansion
      Guide to bibliography
Chapter 3. Matched asymptotic expansions
    Problem 3.1  : Physical scaling analysis of boundary layer thickness
    Problem 3.2  : Higher-order matching
    Problem 3.3  : Absorbing boundary condition
      Matched asymptotic expansions in practice
    Problem 3.4  : Derivative layer
      Corner layers and internal layers
    Problem 3.5  : Phase diagram
    Problem 3.6  : Internal derivative layer
    Problem 3.7  : Where does the kink go
      Guide to bibliography
Chapter 4. Matched asymptotic expansions in PDE'S
      Moving internal layers

      Chapman-Enskog asymptotics
    Problem 4.1  : Relaxation of kink position
    Problem 4.2  : Hamilton-Jacobi equation from front motion
    Problem 4.3  : Chapman -Enskog asymptotics
      Projected Lagrangian
    Problem 4.4  : Circular fronts in nonlinear wave equation
    Problem 4.5  : Solitary wave dynamics in two dimensions
    Problem 4.6  : Solitary wave diffraction
        Singularly perturbed eigenvalue problemo TotonA:8.9  msldors
      Homogenization of swiss cheese
    Problem 4.7  : Neumann boundary conditions and effective dipoles
    Problem 4.8  : Two dimensions
      Guide to bibliography
Chapter 5. Prandtl boundary layer theory
      Stream function and vorticity-olioe
      Preliminary non-dimensionalization iermqo undo
      Outer expansion and 「dry water」
      Inner expansion
    Problem 5.1  : Vector calculus of boundary layer coordinates
      Leading order matching and a first integrals
    Problem 5.2  : The body surface is a source of vorticity
    Problem 5.3  : Downstream evolutionisd oltca
      Displacement thickness
      Solutions based on scaling symmetry
      Blasius flow over flat plate
      Nonzero wedge angles (m≠0)
      Precursor of boundary layer separation
    Problem 5.4  : Wedge flows with source
    Problem 5.5  : Mixing by vortex
      Guide to bibliography
Chapter 6. Modulated oscillations
      Physical flavors of modulated oscillations
    Problem 6.1  : Beats dho
    Problem 6.2  : The beat goes on
    Problem 6.3  : Wave packets as beats in spacetime
    Problem 6.4  : Adiabatic invariant of harmonic oscillator
    Problem 6.5  : Passage through resonance for harmonic oscillator
    Problem 6.6  : Internal resonance between waves on a ring
      Method of two scales
    Problem 6.7  : Nonlinear parametric resonance gargoildid
    Problem 6.8  : Forced van der Pol ODE
    Problem 6.9  : Inverted pendulum
      Strongly nonlinear oscillations and action
    Problem 6.10  : Energy, action and frequency
    Problem 6.11  : Hamiltonian analysis of the adiabatic invariant
    Problem 6.12  : Poincar? analysis of nonlinear oscillations
      A primer on nonlinear waves
      Modulation Lagrangian
    Problem 6.13  : Nonlinear geometric attenuation
    Problem 6.14  : Modulational instability

      A primer on homogenization theory
    Problem 6.15  :Direct homogenization
      Guide to bibliography
Chapter 7.  Modulation theory by transforming variable
      Transformations in classical mechanics
    Problem 7.1  : Geometry of action-angle variables noiouu mso
    Problem 7.2  : Stokes expansion for quadratically nonlinear
      oscillator
    Problem 7.3  : Frequency-action relation
    Problem 7.4  : Follow the bouncing ball
      Near-identity transformations sioi u? y bio
    Problem 7.5  : van der Pol ODE by near-identity transformations
    Problem 7.6  : Subtle balance between positive and negative damping
    Problem 7.7  : Adiabatic invariants again
      Dissipative perturbations of the Kepler problem
      Modulation theory of damped orbits
      Guide to bibliography
Chapter 8. Nonlinear resonance
    Problem 8.1  : Modulation theory of resonance
      A prototype example