幫助中心 | 我的帳號 | 關於我們

偏微分方程的有限元和降維方法(英文版)

  • 作者:羅振東
  • 出版社:科學
  • ISBN:9787030775443
  • 出版日期:2024/01/01
  • 裝幀:平裝
  • 頁數:652
人民幣:RMB 198 元      售價:
放入購物車
加入收藏夾

內容大鋼
    該書共5章,分別介紹有限元和混合有限元理論基礎及其應用。最精彩的是第4和第5章,詳細介紹非定常偏微分方程有限元法中的有限元空間和有限元未知解係數向量的降維方法,可將含數十萬乃至上千萬未知量的有限元迭代方程降階成為只有很少幾個未知量的降階方程,理論和數值例子都證明了兩種降維方法的正確性和有效性。這些降維方法都是作者原創性的工作,這些方法都已經在國際重要刊物發表,該書很詳細做了介紹。這些方法的推廣應用,將會帶動計算數學向更高度發展。

作者介紹
羅振東

目錄
1  Basic Theory of Standard Finite Element Method
  1.1  The Basic Principles of Functional Analysis
    1.1.1  Linear Operator and Linear Functional
    1.1.2  Orthogonal Projection and Riesz Representation Theorem
    1.1.3  Smooth Approximation and Fundamental Lemma of Calculus of Variation
    1.1.4  Generalized Derivatives and Sobolev Spaces
    1.1.5  Imbedding and Trace Theorems of Sobolev Spaces
    1.1.6  Equivalent Module (Norm) Theorem
    1.1.7  Green's Formulas, Riesz-Thorin's Theorem, Interpolation Inequality, and Closed Range Theorem
    1.1.8  Fixed Point Theorems
  1.2  Well-Posedness of Partial Differential Equations
    1.2.1  The Classification for the Partial Differential Equations
      1.2.1.1  Physical Classification for Partial Differential Equations
      1.2.1.2  Mathematical Classification for Partial Differential Equations
      1.2.1.3  The Second-Order Eq. (1.2.2) Does Not Change Its Form under the Invertible Transformation
      1.2.1.4  The Classification According to Characteristic Line
      1.2.1.5  The Classification for the System of Partial Differential Equations
    1.2.2  Lax-Milgram Theorem
    1.2.3  Examples of Application for the Lax-Milgram Theorem
    1.2.4  Differentiability (Regularity) of Generalized Solutions
  1.3  Basic Theories of Function Interpolations
    1.3.1  Finite Element and Related Properties
    1.3.2  Properties of Finite Element Space and Inverse Estimation Theorem
    1.3.3  Function Interpolation and Properties
    1.3.4  The Interpolation Estimates in the Sobolev Spaces
  1.4  Function Interpolations on Triangle Elements
    1.4.1  Lagrange Linear Interpolation on the Triangle Elements
    1.4.2  Lagrange's Quadratic Interpolation on the Triangle Elements
    1.4.3  Lagrange's Cubic Interpolation on the Triangle Elements
    1.4.4  Restricted Lagrange Cubic Interpolation
    1.4.5  Cubic Hermite Interpolation on the Triangle Elements
      1.4.5.1  Complete Cubic Hermite Interpolation on the Triangle Elements
      1.4.5.2  Restricted Hermite Cubic Interpolation on the Triangle Elements
    1.4.6  Quintic Hermite Interpolation on the Triangle Elements
      1.4.6.1  Quintic Hermite Interpolation with 21 Degrees of Freedom
      1.4.6.2  Quintic Hermite Interpolation with 18 Degrees of Freedom
    1.4.7  Clough Interpolation on the Triangular Elements
    1.4.8  Modified Clough Interpolation on the Triangular Elements
    1.4.9  Morley's Interpolation on the Triangle Elements
  1.5  Function Interpolation on the Tetrahedral Element
    1.5.1  Lagrange Linear Interpolation on the Tetrahedral Elements
  
    1.6.5  Incomplete Bicubic Hermite Interpolation on Rectangular...
  1.7  Function Interpolation on Arbitrary Quadrilaterals
    1.7.1  Bilinear Interpolation on the Arbitrary Quadrilateral
2  Basic Theory of Mixed Finite Element Method
3  Mixed Finite Element Methods for the Unsteady Partial Differential Equations
4  The Reduced Dimension Methods of Finite Element Subspaces for Unsteady Partial Differential Equations
5  The Reduced Dimension of Finite Element Solution
Coefficient Vectors for Unsteady Partial Differential Equations
Postscript and Author's Own Statement
Bibliography
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032