幫助中心 | 我的帳號 | 關於我們

流體力學建模--不穩定性與湍流(英文)/國外優秀數學著作原版系列

  • 作者:(以)伊戈爾·蓋辛斯基//弗拉基米爾·羅文斯基|責編:劉立娟
  • 出版社:哈爾濱工業大學
  • ISBN:9787576712605
  • 出版日期:2024/03/01
  • 裝幀:平裝
  • 頁數:551
人民幣:RMB 88 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是一部講述近代流體力學成果的英文專著,本書認為數學方法和模型是應用數學和理論物理學的分支。本書致力於闡釋流體力學建模的相關內容,由四章組成,其中包含大量有用的練習和解決方案。我們在每章末尾的參考書目中提供了相關主題的相對完整的參考資料。

作者介紹
(以)伊戈爾·蓋辛斯基//弗拉基米爾·羅文斯基|責編:劉立娟

目錄
Foreword
Preface
1  Mathematical Background
  1.1  Dynamical systems
    1.1.1  Vector felds and dynamical systems
    1.1.2  Critical points in phase space
    1.1.3  Higher-order autonomous systems
    1.1.4  Dirac delta function
    1.1.5  Special functions
    1.1.6  Green's function
    1.1.7  Boundary and initial value problems
  1.2  Asymptotic behavior and stability
    1.2.1  Asymptotic expansions
    1.2.2  Asymptotic behavior of autonomous systems
    1.2.3  Stability of autonomous systems
    1.2.4  More on stability
  1.3  Bifurcations
    1.3.1  Instability and bifurcations
    1.3.2  Saddle-node bifurcation
    1.3.3  Transcritical and pitchfork bifurcations
    1.3.4  Hopf bifurcation
    1.3.5  Saddle-node bifurcation of a periodic orbit
    1.3.6  Global bifurcation
  1.4  Attractors
    1.4.1  Chaotic motion and symbolic dynamics
    1.4.2  Homoclinic tangles and Smale's horseshoe map
    1.4.3  Poincar? return map
    1.4.4  Lyapunov's exponents and entropy
    1.4.5  Attracting sets and attractors
  1.5  Fractals
    1.5.1  Local structure of fractals
    1.5.2  Operations with fractals
    1.5.3  Fractal attractors in dynamical systems
  1.6  Perturbations
    1.6.1  Regular perturbation theory
    1.6.2  Singular perturbation theory
  1.7  Elements of tensor analysis
    1.7.1  Transformations of coordinate systems
    1.7.2  Covariant and contravariant derivatives
    1.7.3  Christoffel symbols and curvature tensor
    1.7.4  Integral formulas
  1.8  Navier-Stokes equations for nonequilibrium gas mixture
    1.8.1  Continuity,momentum and energy equations
    1.8.2  Closing relations and transport coefficients
    1.8.3  Boundary conditions
    1.8.4  Deducing Navier-Stokes equation
    1.8.5  Existence and uniqueness of solutions of the Navier—Stokes equation
    1.8.6  Relativistic Navier—Stokes equation
  1.9  Exercises
bliography

2  Models for Hydrodynamic Instabilities
  2.1  Stability concepts
    2.1.1  Boundary conditions
    2.1.2  Inviscid and high-Reynolds—number flow
    2.1.3  Basic definitions
  2.2  Rayleigh—Taylor instability
    2.2.1  Potential flow
    2.2.2  Plane boundaries
    2.2.3  Spherical boundaries
    2.2.4  Nonlinear perturbation theory
    2.2.5  Inhomogeneous fluids
    2.2.6  Ⅵscous fluids
  2.3  Kelvin-Helmholtz instability
    2.3.1  Instability of annular incompressible jet
    2.3.2  Rotating jets
    2.3.3  Supersonic viscous jet
    2.3.4  Supersonic viscous jet with Gaussian sound velocity distribution
    2.3.5  Relativistic jet
  2.4  Exercises
bliography
3  Models for Turbulence
  3.1  Symmetries and conservation laws
    3.1.1  Euler and Navier—Stokes equations
    3.1.2  Symmetries
    3.1.3  Conservation laws
  3.2  Anomalous scaling exponents
    3.2.1  Multifractal models
    3.2.2  Random variables and correlation functions
    3.2.3  Richardson-Kolmogorov concept of turbulence
    3.2.4  Scaling of the structure hmctions
    3.2.5  Dissipative and dynamical scaling
    3.2.6  Fusion rules in turbulence systems
  3.3  Calculation of scaling exponents
    3.3.1  Basic formulas
  3.4  Bifurcations for the Kuramoto-Sivashinsky equation
    3.4.1  Symmetry:translations, reflections, and O(2)-equivariance
    3.4.2  Kuramoto-Sivashinsky equation
  3.5  Strange attractors and turbulence
    3.5.1  The Taylor—Couette experiment
    3.5.2  Dynamical systems with one observable
    3.5.3  Limit capacity and dimension
    3.5.4  Dimension and entropy
  3.6  Global attractor for Navier-Stokes equation
    3.6.1  The ladder inequality
    3.6.2  Estimates
    3.6.3  Length scales in the two-dimensional case
    3.6.4  Three-dimensional regularity
    3.6.5  The attractor dimension
  3.7  Hierarchical sheU models
    3.7.1  Gledzer-Ohkitani-Yamada shell model

    3.7.2  (N,?)-sabra shell models
    3.7.3  Navier-Stokes equations in the common wavelets representatoon
  3.8  Entropy principle maximum
    3.8.1  Entropy and probability
    3.8.2  Derivation of the motion equations
    3.8.3  The hierarchical dynamical system
    3.8.4  Fokker-Planck equation
Bibliography
4  Modeling of Flow over Blunted Bodies
  4.1  Onsager』s theory
    4.1.1  General concept of a multi-component gas mixture
    4.1.2  Thermodynamic potentials,forces and flows
    4.1.3  Closing relations
  4.2  Governing equations for hypersonic viscous gas flow
    4.2.1  Conditions on the surface of discontinuity
    4.2.2  Governing parameters
    4.2.3  Transformation of initial equations
  4.3  Flow regimes for hypersonic viscous gas flow
    4.3.1  Viscons shock layer
    4.3.2  vortex intersection,nonstrong and strong injection
    4.3.3  Boundary layer,nonstrong and strong injection
    4.3.4  Boundary layer and strong struction
  4.4  Shock wave structure
    4.4.1  Outer sublayer
    4.4.2  Middle sublayer
    4.4.3  Inner sublayer
  4.5  Viscous shock layer
    4.5.1  Main equations
    4.5.2  Generalized Rankine-Hugoniot conditions at the shock wave
  4.6  Models for shock sublayers
    4.6.1  Inviscid shock and boundary layers
    4.6.2  Injection gas layer
    4.6.3  Viscous boundary and mixing gas layers
    4.6.4  Viscous boundary layer with strong suction
    4.6.5  Flow at viscous boundary layer
  4.7  Flow at injection gas layer
    4.7.1  General stagnation point
    4.7.2  Wings at incidence at slipping angles
    4.7.3  Flow over swirling axisymmetric bodies
  4.8  Nonuniform flow at inviscid shock layer
    4.8.1  Nonuniform flow of the far-wake type
    4.8.2  Upstream swirling flow over axisymmetric bodies
  4.9  Exercises
Bibliography
Index
編輯手記

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032