幫助中心 | 我的帳號 | 關於我們

時間序列與機器學習

  • 作者:張戎//羅齊|責編:張爽
  • 出版社:電子工業
  • ISBN:9787121478178
  • 出版日期:2024/05/01
  • 裝幀:平裝
  • 頁數:248
人民幣:RMB 100 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書分為8章,內容包括時間序列分析的基礎知識、時間序列預測的常用方法,以及神經網路在時間序列預測中的應用;時間序列異常檢測演算法的技術與框架,如何識別異常的時間點及多種異常檢測方法;時間序列的相似性度量方法、聚類演算法;多維時間序列在廣告分析和業務運維領域的應用,利用OLAP技術對多維時間序列進行有效處理,通過根因分析技術獲得導致故障的維度和元素;智能運維領域(AIOps)和金融領域的兩個應用場景。
    本書適合數據科學家、機器學習工程師、金融領域從業者,以及對時間序列分析和機器學習感興趣的讀者閱讀。本書可作為高等院校電腦、統計學、金融學等相關專業師生的教材和參考資料。

作者介紹
張戎//羅齊|責編:張爽

目錄
第1章  時間序列概述
  1.1  發展歷程
  1.2  應用現狀
  1.3  時間序列分類
    1.3.1  單維時間序列
    1.3.2  多維時間序列
  1.4  小結
第2章  時間序列的信息提取
  2.1  特徵工程的入門知識
    2.1.1  特徵工程簡介
    2.1.2  數值型特徵
    2.1.3  類別型特徵
    2.1.4  交叉特徵
  2.2  時間序列的預處理
    2.2.1  時間序列的缺失值
    2.2.2  時間序列的縮放
  2.3  時間序列的特徵工程
  2.4  時間序列的統計特徵
  2.5  時間序列的熵特徵
  2.6  時間序列的降維特徵
    2.6.1  分段聚合逼近
    2.6.2  分段線性逼近
    2.6.3  分段常數逼近
    2.6.4  符號逼近
    2.6.5  最大三角形三桶演算法
    2.6.6  用神經網路自動生成特徵的演算法
  2.7  時間序列的單調性
    2.7.1  線性擬合方法
    2.7.2  控製圖方法
    2.7.3  均線方法
  2.8  小結
第3章  時間序列預測
  3.1  時間序列預測的統計方法
    3.1.1  自回歸差分移動平均模型
    3.1.2  指數平滑方法
    3.1.3  Prophet
  3.2  時間序列預測的深度學習方法
    3.2.1  循環神經網路
    3.2.2  長短期記憶網路
    3.2.3  Transformer
    3.2.4  Informer
  3.3  小結
第4章  時間序列異常檢測
  4.1  異常類型及檢測方法分類
  4.2  基於概率密度的方法
    4.2.1  核密度估計原理
    4.2.2  核密度估計方法
  4.3  基於重構的方法
    4.3.1  變分自編碼器
    4.3.2  Donut

  4.4  基於距離的方法
    4.4.1  孤立森林
    4.4.2  RRCF
  4.5  基於有監督的方法
  4.6  基於弱監督的方法
  4.7  小結
第5章  時間序列的相似度與聚類
  5.1  相似度函數
    5.1.1  經典的相似度函數
    5.1.2  基於分段聚合逼近的相似度函數
    5.1.3  基於時間序列平滑的相似度函數
    5.1.4  基於神經網路的相似度演算法
  5.2  距離函數
    5.2.1  歐氏距離
    5.2.2  DTW演算法
    5.2.3  基於相似性的距離
    5.2.4  基於符號特徵的距離
    5.2.5  基於自相關性的距離
    5.2.6  基於周期性的距離
    5.2.7  基於模型的距離
  5.3  基於特徵工程的聚類演算法
  5.4  基於距離和相似度的聚類演算法
  5.5  流式聚類演算法
  5.6  小結
第6章  多維時間序列
  6.1  多維時間序列簡介
  6.2  單維時間序列與多維時間序列
    6.2.1  廣告分析領域
    6.2.2  業務運維領域
  6.3  單維時間序列監控系統和多維時間序列監控系統的對比
  6.4  根因分析
    6.4.1  根因分析的基礎概念
    6.4.2  人工執行根因分析的難度
    6.4.3  OLAP技術和方法
  6.5  基於時間序列異常檢測演算法的根因分析
    6.5.1  時間序列異常檢測
    6.5.2  根因分析的列表結構
    6.5.3  根因分析的樹狀結構
  6.6  基於熵的根因分析
    6.6.1  熵的概念和性質
    6.6.2  概率之間的距離
    6.6.3  基於熵的根因分析方法
  6.7  基於樹模型的根因分析
    6.7.1  特徵工程和樣本
    6.7.2  決策樹演算法
  6.8  規則學習
    6.8.1  根因分析的列表結構
    6.8.2  根因分析的樹狀結構
    6.8.3  列表結構與樹狀結構的對比
    6.8.4  規則的排序

  6.9  小結
第7章  智能運維的應用場景
  7.1  智能運維
    7.1.1  智能運維的主要方向
    7.1.2  智能運維的實施路徑
  7.2  指標監控
    7.2.1  硬體監控與軟體監控
    7.2.2  業務監控
    7.2.3  節假日效應
    7.2.4  持續異常的情況
    7.2.5  存在基線的情況
    7.2.6  尋找基線的方法
  7.3  容量預估和彈性伸縮
    7.3.1  容量預估
    7.3.2  彈性伸縮
  7.4  告警系統
    7.4.1  告警系統的定義與評估指標
    7.4.2  告警關聯與收斂
    7.4.3  基於相似性或聚類演算法的告警關聯與收斂
    7.4.4  基於告警屬性泛化層次的告警關聯與收斂
    7.4.5  基於根因分析的告警關聯與收斂
  7.5  小結
第8章  金融領域的應用場景
  8.1  量化交易概述
    8.1.1  數據
    8.1.2  因子
    8.1.3  回測
  8.2  因子特徵工程
  8.3  資產定價
  8.4  資產配置
  8.5  波動率預測
  8.6  小結
參考文獻

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032