幫助中心 | 我的帳號 | 關於我們

結構化動態系統的盲辨識--確定性方法及觀點(英文版)(精)

  • 作者:Chengpu Yu//Lihua Xie//Michel Verhaegen//Jie Chen
  • 出版社:科學
  • ISBN:9787030781710
  • 出版日期:2024/01/01
  • 裝幀:精裝
  • 頁數:266
人民幣:RMB 168 元      售價:
放入購物車
加入收藏夾

內容大鋼
     This book is intended for researchers active in the field of (blind) system identification and aims to provide new identification ideas/insights for dealing with challenging system identification problems. It presents a comprehensive overview of the state-of-the-art in the area, which would save a lot of time and avoid collecting the scattered information from research papers, reports and unpublished work. Besides, it is a self-contained book by including essential algebraic, system and optimization theories, which can help graduate students enter the amazing blind system identification world with less effort.

作者介紹
Chengpu Yu//Lihua Xie//Michel Verhaegen//Jie Chen

目錄
1  Introduction
  1.1  Examples of the Blind System Identification
  1.2  Optimization Based Blind System Identification
  1.3  Blind Identification of Various System Models
  1.4  Organization of This Book
  References
Part I  Preliminaries
  2  Linear Algebra and Polynomial Matrices
    2.1  Vector Space and Basis
    2.2  Eigenvalue Decomposition
    2.3  Singular Value Decomposition
    2.4  Orthogonal Projection and Oblique Projection
    2.5  Sum and Intersection of Subspaces
    2.6  Angles Between Subspaces
    2.7  Polynomial Matrices and Polynomial Bases
    2.8  Summary
    References
  3  Representation of Linear System Models
    3.1  Transfer Functions
      3.1.1  Properties of Coprime Matrix Fraction
      3.1.2  Verification and Computation of Coprime Matrix Fraction
    3.2  State Space Models
    3.3  State Space Realization
    3.4  HankelMatrix Interpretation
    3.5  Structured State-Space Models
      3.5.1  Graph Theory
      3.5.2  Structured Algebraic System Theory
    3.6  Summary
    Reference
  4  Identification of LTI Systems
    4.1  Least-Squares Identification
      4.1.1  Identifiability of a Rational Transfer Function Matrix
      4.1.2  Least-Squares Identification Method
    4.2  Subspace Identification
      4.2.1  Subspace Identification via Orthogonal Projection
      4.2.2  Subspace Identification via State Estimation
      4.2.3  Subspace Identification via State Compensation
      4.2.4  Subspace Identification via Markov Parameter Estimation
    4.3  Parameterized State-Space Identification
      4.3.1  Gradient-BasedMethod
      4.3.2  Difference-of-Convex Programming Method
    4.4  Summary
    References
Part II  Blind System Identification with a Single Unknown Input
  5  Blind Identification of SIMO FIR Systems
    5.1  Structured Subspace Factorization
      5.1.1  Blind Identification of FIR Filters
      5.1.2  Blind Identification of a Source Signal
    5.2  Cross RelationMethod
    5.3  Least-Squares Smoothing Method

      5.3.1  Blind FIR Filter Identification
      5.3.2  Blind Source Signal Estimation
    5.4  Blind Identification of Time-Varying FIR Systems
      5.4.1  Input Signal Estimation
      5.4.2  Time-Varying Filter Identification
    5.5  Blind Identification of Nonlinear SIMO Systems
      5.5.1  SIMO-Wiener System Identification
      5.5.2  Hammerstein-Wiener System Identification
    5.6  Summary
    References
  6  Blind Identification of SISO IIR Systems via Oversampling
    6.1  Oversampling of FIR and IIR Systems
      6.1.1  Multirate Identities
      6.1.2  Multirate Transfer Functions
      6.1.3  Multirate State-Space Models
    6.2  Coprime Conditions for Lifted SIMO Systems
    6.3  Blind Identification of Non-minimum Phase Systems
    6.4  Blind Identification of Hammerstein Systems
      6.4.1  Blind Identifiability
      6.4.2  Blind Identification Approach
    6.5  Blind Identification of Output Switching Systems
    6.6  Summary
    References
  7  Distributed Blind Identification of Networked FIR Systems
    7.1  Motivation for the Distributed Blind Identification
    7.2  Distributed Blind System Identification Using Noise-Free Data
      7.2.1  Distributed Blind Identification Algorithm
      7.2.2  Convergence Analysis
      7.2.3  Numerical Simulation
    7.3  Distributed Blind System Identification Using Noisy Data
      7.3.1  Distributed Blind Identification Algorithm
      7.3.2  Convergence Analysis
      7.3.3  Numerical Simulation
    7.4  Recursive Blind Source Equalization Using Noisy Data
      7.4.1  Direct Distributed Equalization
      7.4.2  Indirect Distributed Equalization
      7.4.3  Distributed Blind Equalization with Noise-Free Measurements
      7.4.4  Distributed Blind Equalization with Noisy Measurements
      7.4.5  Blind Equalization with a Time-Varying Topology
      7.4.6  Numerical Simulation
    7.5  Summary
    References
Part III  Blind System Identification with Multiple Unknown Inputs
  8  Blind Identification of MIMO Systems
    8.1  Blind Identification ofMIMO FIR Systems
      8.1.1  Identifiability Analysis
      8.1.2  Subspace Blind Identification Method
    8.2  Blind Identification of Multivariable State-Space Models
    
      8.2.3  Blind Identification of Numerator Polynomial Matrices
      8.2.4  Numerical Simulation
    8.3  Summary
    References
  9  Blind Identification of Structured State-Space Models
    9.1  Strong Observability of Structured State-Space Models
      9.1.1  Maximum Unobservable Subspace
      9.1.2  State Estimation with Unknown Inputs
    9.2  Blind Identification of Multivariable State-Space Models
      9.2.1  Identifiability Analysis
      9.2.2  Subspace-Based Blind Identification Method
      9.2.3  Numerical Simulations
    9.3  Blind System Identification Excited by Different Unknown Inputs
      9.3.1  Identifiability Analysis
      9.3.2  Subspace Identification Method
    9.4  Summary
    References
  10  Blind Local Identification of Large-Scale Networked Systems
    10.1  Local Network Identification
    10.2  Subspace Identification Approach
    10.3  Subspace Identification of Unknown Inputs
      10.3.1  Estimation of Completely Unmeasurable Inputs
    10.4  Numerical Simulations
    10.5  Summary
    References
  11  Conclusions
    11.1  About the Identification Object
    11.2  About the Identifiability Analysis
    11.3  About the Identification Method
    11.4  Artificial Intelligence Driven Blind System Identification
    References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032