幫助中心 | 我的帳號 | 關於我們

熵值理論及其在機械狀態監測中的應用(英文版)

  • 作者:李永波//王先芝//鄧子辰//司書賓//李玉慶
  • 出版社:科學
  • ISBN:9787030773777
  • 出版日期:2024/01/01
  • 裝幀:平裝
  • 頁數:211
人民幣:RMB 188 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書系統地回顧了熵值理論發展,介紹了熵值方法的最新研究成果,詳盡闡述了每種計算方法的定義、原理、性質、適用性及診斷機理,並給出每種方法在機械故障診斷中應用的典型案例。最後,討論了熵值在未來的數據驅動故障診斷的應用前景和潛在研究趨勢,為後續研究提供指引。主要內容包括:熵值理論的發展;熵值理論對比分析;基於熵值的智能故障診斷框架;散度熵;基於符號動力學濾波的熵值理論研究;多尺度熵的理論與應用;基於熵值理論的降噪方法研究;基於熵值理論的遷移診斷;熵值理論在變轉速工況下的智能診斷方法;基於多元熵的大型旋轉機械故障診斷方法;基於振蕩排列熵的滾動軸承故障診斷方法。

作者介紹
李永波//王先芝//鄧子辰//司書賓//李玉慶

目錄
Preface
Chapter 1  Development of entropy theories
  1.1  From thermodynamic to information entropy
  1.2  Renyi entropy
  1.3  Kolmogorov-Sinai entropy
  1.4  Eckmann-Ruelle entropy
  1.5  Approximate entropy
  1.6  Sample entropy
  1.7  Fuzzy entropy
  1.8  Permutation entropy
  1.9  Conclusions
  1.10  References
Chapter 2  Comparative analysis of entropy methods on health condition monitoring of machines
  2.1  Comparisons of various entropy measures
  2.2  Quantitative comparison of entropy measures
  2.3  Effect of noise on entropy calculation
    2.3.1  Research on the effect of noise using a simulated model
    2.3.2  Performance comparison under strong noise
  2.4  Calculation efficiency
    2.4.1  Research on the calculation efficiency using simulation model
    2.4.2  Discussion on the calculation efficiency
  2.5  Effect of data length
  2.6  Classification performance
    2.6.1  Simulation model regarding classification performance
    2.6.2  Classification performances for different types of entropy algorithms
  2.7  Conclusions
  2.8  References
Chapter 3  Intelligent fault diagnosis based on entropy theories
  3.1  General procedure of the intelligent fault diagnosis
    3.1.1  Data collection
    3.1.2  Feature extraction
    3.1.3  Feature selection
    3.1.4  Pattern recognition
  3.2  Case study: intelligent fault diagnosis method based on modified multiscale symbolic dynamic entropy and mRMR
    3.2.1  MMSDE-mRMR-LSSVM method
    3.2.2  Experiment
  3.3  Conclusions
  3.4  References
Chapter 4  Diversity entropy
  4.1  Introduction: consistency problem of the entropy methods
  4.2  Methodology of diversity entropy
  4.3  Properties and simulation evaluation
    4.3.1  Consistency
    4.3.2  Robustness
    4.3.3  Calculation efficiency
  4.4  Case study: fault diagnosis of the dual-rotor system
    4.4.1  Fault diagnosis frame based on MDE and ELM
    4.4.2  Experiment setup
    4.4.3  Results and analysis
  4.5  Conclusions

  4.6  References
Chapter 5  Symbolic dynamic filtering based entropy methods
  5.1  Introduction
  5.2  Methods
    5.2.1  Symbolic dynamic filtering
    5.2.2  Symbolic dynamic entropy
    5.2.3  Symbolic fuzzy entropy
    5.2.4  Symbolic diversity entropy
  5.3  Numerical validation for symbolic fuzzy entropy
    5.3.1  Complexity measure
    5.3.2  Robustness to noise
    5.3.3  Computational complexity
  5.4  Case study: fault diagnosis of bearing system
    5.4.1  MSFE-based fault diagnosis method
    5.4.2  Test rig
    5.4.3  Results and analysis
  5.5  Conclusions
  5.6  References
Chapter 6  Multiscale based entropy methods
  6.1  Multiscale methods
    6.1.1  Multiscale entropy
    6.1.2  Composite multiscale entropy
    6.1.3  Modified multiscale entropy
    6.1.4  Refined composite multiscale entropy
  6.2  Generalized multiscale methods
    6.2.1  Generalized multiscale entropy
    6.2.2  Generalized composite multiscale entropy
    6.2.3  Generalized refined composite multiscale entropy
  6.3  Hierarchical multiscale methods
    6.3.1  Hierarchical entropy
    6.3.2  Modified hierarchical entropy
    6.3.3  Modified hierarchical generalized composite entropy
  6.4  Case study: multiscale entropy performance analysis
    6.4.1  Dataset
    6.4.2  Experiment setup
    6.4.3  Results and analysis
  6.5  Conclusions
  6.6  References
Chapter 7  Application of entropy methods in extracting weak fault characteristics by adaptive decomposition
  7.1  Introduction
    7.1.1  LMD
    7.1.2  The optimum PF component selection
    7.1.3  Improved mulfiscale fuzzy entropy
    7.1.4  Feature selection using Laplacian score algorithm
    7.1.5  Improved SVM-BT
  7.2  Fault diagnosis based on LMD and IMFE
  7.3  Case study: fault diagnosis of rolling bearing
    7.3.1  Experiment setup
    7.3.2  Results and analysis
  7.4  Conclusions

  7.5  References
Chapter 8  Intelligent fault diagnosis based on entropy theories and transfer learning
  8.1  Preliminary knowledge
    8.1.1  Concepts
    8.1.2  Single domain VS multisource domain
    8.1.3  The domain invariant properties of the entropy
  8.2  Transfer diagnosis from single source domain
    8.2.1  The application of entropy in single source domain transfer problems
    8.2.2  Multiscale transfer symbolic dynamic entropy method
    8.2.3  Case study
  8.3  Transfer diagnosis knowledge from multisource domain
    8.3.1  The application of entropy in multiple source domain transfer problems
    8.3.2  Multisource domain generalization based on dispersion entropy
    8.3.3  Case study
  8.4  Conclusions
  8.5  References
Chapter 9  Entropy-based fault diagnosis under variable rotational speed
  9.1  Introduction
  9.2  The bandwidth selection criterion for Vold-Kalman filter
  9.3  Fault diagnosis frame based on IVKF, MSE, LS and LSSVM
  9.4  Case study: fault diagnosis of planetary gearbox
    9.4.1  Experiment setup
    9.4.2  Results and analysis
  9.5  Conclusions
  9.6  References
Chapter 10  Multivariate entropy methods and fault diagnosis of large-scale machinery
  10.1  Introduction: multivariate entropy and large-scale machinery
  10.2  Multivariate entropy
    10.2.1  Multivariate multiscate sample entropy
    10.2.2  Multivariate multiscale fuzzy entropy
    10.2.3  Multivariate multiscale permutation entropy
  10.3  Variational embedding multiscale diversity entropy
  10.4  Simulation validation: the limitations of the multivariate entropy
    10.4.1  Simulation setting
    10.4.2  Results and analysis
  10.5  Case study: fault diagnosis of bearing-rotor system
  10.6  Conclusions
  10.7  References
Chapter 11  Oscillation-based permutation entropy calculation as dynamic nonlinear feature for health monitoring of rolling element bearing
  11.1  Introduction
  11.2  Weaknesses of PE in dynamic health monitoring
    11.2.1  Simulation model
    11.2.2  Two key weaknesses
  11.3  Oscillation-based permutation entropy
    11.3.1  Effect of bearing FSC on PE calculation
    11.3.2  Theory of oscillation based FSC separation scheme
    11.3.3  OBPE calculation for dynamic beating health monitoring
  11.4  Parameter selection for OBPE
    11.4.1  Selection of parameters related to TQWT
    11.4.2  Selection of data length

    11.4.3  Selection of embedding dimension and time delay
  11.5  Case study
  11.6  Conclusions
  11.7  References
Chapter 12  Summary

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032