幫助中心 | 我的帳號 | 關於我們

Simulation on Hydration of Tricalcium Silicate in Cement Clinker(精)

  • 作者:編者:Dejian Shen//Xin Wang
  • 出版社:科學
  • ISBN:9787030768674
  • 出版日期:2023/01/01
  • 裝幀:精裝
  • 頁數:186
人民幣:RMB 158 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是在作者近20年來在水泥與混凝土方面的研究工作以及國家和省基金以及科技支撐計劃的資助項目研究成果的基礎上完成的。本書以硅酸鹽水泥中主要組成材料硅酸三鈣為主要研究對象,通過考慮硅酸三鈣中的晶體位錯和孔溶液特性建立了硅酸三鈣溶解模型,揭示了不同溶解模式下硅酸三鈣的水化動力學過程和微觀結構發展規律;在溶解模型基礎上建立了硅酸三鈣多種水化機制耦合模型,揭示了在多種水化控制機製作用下的水化速率演變、孔溶液特性變化與微觀結構發展規律;揭示了顆粒內部孔徑分佈與孔隙率等影響因素對硅酸三鈣水化速率與微觀結構發展的影響規律;建立基於硅酸三鈣水化模型微觀結構的水化-擴散一體化模擬方法,揭示了硅酸三鈣漿體中氯離子有效擴散係數隨水固比的變化規律。

作者介紹
編者:Dejian Shen//Xin Wang

目錄
1 Introduction
  1.1  Hydration of Tricalcium Silicate
  1.2  State-of-the-Art on Hydration Mechanisms and Simulation Methods
    1.2.1  Tricalcium Silicate Hydration in the Extremely Dilute Condition
    1.2.2  Tricalcium Silicate Hydration in the Normal w/s Ratio Condition
    1.2.3  Influence of Particle Morphology on Hydration
    1.2.4  Ionic Diffusivity of Hydrated Tricalcium Silicate and Calcium Silicate Hydrate
  1.3  Objectives and Scope
  References
2 Simulation on Dissolution Mechanisms of Tricalcium Silicate
  2.1  Dissolution Modes of Tricalcium Silicate
    2.1.1  Classical Dissolution Mode
    2.1.2  Anisotropic Dissolution Mode
  2.2  Methodology
    2.2.1  Modelling Strategies for the Dissolution Mechanisms
    2.2.2  Definition of Cells
    2.2.3  Generation of Initial Structure
    2.2.4  Chemical Reaction and Interfacial Dissolution Rate
    2.2.5  Algorithms for Dissolution Modes
  2.3  Comparison on Results from Simulation and Experiment
  2.4  Simulation Details
  2.5  Microstructure Development
    2.5.1  Change of the Particle Morphology
    2.5.2  Reactive Surface Area
  2.6  Hydration Kinetics
    2.6.1  Degree of Hydration
    2.6.2  Hydration Rate
  2.7  Summary
  References
3 Simulation on Mixed-Control of Dissolution and Diffusion Mechanisms of Tricalcium Silicate
  3.1  Suggested Mechanisms for Deceleration Period in Tricalcium Silicate Hydration
    3.1.1  Diffusion-Controlled Mechanism
    3.1.2  Dissolution Mechanism
  3.2  Methodology
    3.2.1  Definition of Cells
    3.2.2  Generation of Initial Structure Considering Crystal Defects
    3.2.3  Considering Diffusion-Controlled Mechanism
    3.2.4  Dissolution and Precipitation Processes Modelling
  3.3  Algorithm for Simulation Model
  3.4  Comparison on Results Obtained from Simulation and Experiment
  3.5  Microstructure Development
    3.5.1  Evolution of Microstructure of Tricalcium Silicate Particle
    3.5.2  Evolution of Reactive Surface Area and Interfacial Dissolution Rate
  3.6  Hydration Kinetics
    3.6.1  Effect of Diffusion Coefficient on Hydration Rate
    3.6.2  Effect of Solution Concentration at the Reaction Front on Hydration Rate
  3.7  Summary
  References
4 Simulation on Mixed-Control of Dissolution and Boundary Nucleation and Growth Mechanisms of Tricalcium Silicate
  4.1  Methodology

    4.1.1  General Ideal of Modelling
    4.1.2  Initial Structure Module
    4.1.3  Tricalcium Silicate Dissolution Module
    4.1.4  Calcium Silicate Hydrate and Calcium Hydroxide Precipitation Module
    4.1.5  Pore Solution Module
  4.2  Main Algorithms for Simulation Model
    4.2.1  Algorithm for Initial Structure Module
    4.2.2  Algorithm for Tricalcium Silicate Dissolution Module
    4.2.3  Algorithm for Calcium Silicate Hydrate and Calcium Hydroxide Precipitation Module
    4.2.4  Influence of Resolution on Simulation Results
  4.3  Comparison on Results Obtained from Simulation and Experiment
    4.3.1  Tricalcium Silicate Hydration in Extremely High Dilution Condition
    4.3.2  Tricalcium Silicate Hydration in Normal Water-to-Solid Condition
  4.4  Initial Fall
    4.4.1  Evolution of Hydration Kinetics and Microstructure Development
    4.4.2  Influence of Dislocation Density on Tricalcium Silicate Dissolution
    4.4.3  Evolution of Si Concentration
  4.5  Main Hydration Peak
    4.5.1  Acceleration Period
    4.5.2  Transition from Acceleration Period to Deceleration Period
    4.5.3  Limitations of This Study
  4.6  Summary
  References
5 Simulation on the Influence of Particle Internal Pores
  5.1  Methodology
    5.1.1  Hydration Simulation Models and Research Approach
    5.1.2  Considering Tricalcium Silicate Particle with Particle Internal Pores
    5.1.3  Generation of Initial Microstructure
  5.2  Algorithm for Tricalcium Silicate Hydration Considering Particle Internal Pores
  5.3  Comparison on Results Obtained from Experiment and Simulation
  5.4  Microstructure Development and Hydration Kinetics
    5.4.1  Initial Microstructure
    5.4.2  Influence of Internal Pore Size Distribution on Hydration Kinetics
    5.4.3  Influence of Internal Pore Size Distribution on Microstructure Development
    5.4.4  Influence of Particle Porosity on Hydration Kinetics
    5.4.5  Limitations of This Study
  5.5  Summary
  References
6 Simulation on Ionic Diffusion Using Virtual Tricalcium Silicate Microstructure
  6.1  Experimental Program
    6.1.1  Materials
    6.1.2  Specimen Preparation
    6.1.3  Experimental Scheme for Determining Effective Diffusion Coefficients
    6.1.4  Electro-migration Experiment
    6.1.5  SEM Analysis
  6.2  Simulation Method
    6.2.1  Generating Microstructure of Tricalcium Silicate Paste
    6.2.2  Reconstructing Microstructure of Tricalcium Silicate Paste in FEM Software
    6.2.3  Steady-State Diffusion Simulation
  6.3  Effective Diffusion Coefficients of Tricalcium Silicate and Calcium S
    6.3.1  Identification of Phases on Specimen Surface
    6.3.2  Effective Diffusion Coefficients of Tricalcium Silicate Pastes
    6.3.3  Validation of Effective Diffusion Coefficient of Calcium Silicate Hydrate
  6.4  Comparison of Diffusion Coefficients Obtained from Simulation and Experiment
  6.5  Comparison of Diffusion Coefficients Between Tricalcium Silicate and Portland Cement Pastes
  6.6  Summary
  References
Appendix A: Particle Size Distribution
Appendix B: Internal Pore Size Distribution
Appendix C: Particle Information Utilized in the Simulation
Appendix D: Comparison of Degree of Hydration Obtained Using Different Rate Laws
Appendix E: Influence of Voxel Resolution on Simulation Results

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032