幫助中心 | 我的帳號 | 關於我們

R-演算--一種信念修正的邏輯(英文版)(精)

  • 作者:Wei Li//Yuefei Sui
  • 出版社:科學
  • ISBN:9787030764102
  • 出版日期:2023/01/01
  • 裝幀:精裝
  • 頁數:200
人民幣:RMB 130 元      售價:
放入購物車
加入收藏夾

內容大鋼
    信念修正是人工智慧的研究分支之一。在哲學、認知心理學和資料庫更新等領域中,很早就有對信念修正的討論和研究。AGM公設在20世紀70年代末被提出,它是任何一個合理的信念修正運算元應該滿足的最基本條件。本書作者李未院士在20世紀80年代中期提出了R-演算,這是一個滿足AGM公設、非單調的並且類似於Gentzen推理系統的信念修正運算元。本書對R-演算作多個視角的擴展,將為研究生尋找研究方向和研究思路提供一定幫助。

作者介紹
Wei Li//Yuefei Sui

目錄
1  Introduction
  1.1  Belief Revision
  1.2  R-Calculus
  1.3  Extending R-Calculus
  1.4  Approximate R-Calculus
  1.5  Applications of R-Calculus
  References
2  Preliminaries
  2.1  Propositional Logic
    2.1.1  Syntax and Semantics
    2.1.2  Gentzen Deduction System
    2.1.3  Soundness and Completeness Theorem
  2.2  First-Order Logic
    2.2.1  Syntax and Semantics
    2.2.2  Gentzen Deduction System
    2.2.3  Soundness and Completeness Theorem
  2.3  Description Logic
    2.3.1  Syntax and Semantics
    2.3.2  Gentzen Deduction System
    2.3.3  Completeness Theorem
  References
3  R-Calculi for Propositional Logic
  3.1  Minimal Changes
    3.1.1  Subset-Minimal Change
    3.1.2  Pseudo-Subformulas-Minimal Change
    3.1.3  Deduction-Based Minimal Change
  3.2  R-Calculus for Minimal Change
    3.2.1  R-Calculus S for a Formula
    3.2.2  R-Calculus S for a Theory
    3.2.3  AGM Postulates A for Minimal Change
  3.3  R-Calculus for 5-Minimal Change
    3.3.1  R-Calculus T for a Formula
    3.3.2  R-Calculus T for a Theory
    3.3.3  AGM Postulates A for Minimal Change
  3.4  R-Calculus for S Minimal Change
    3.4.1  R-Calculus U for a Formula
    3.4.2  R-Calculus U for a Theory
  References
4  R-Calculi for Description Logics
  4.1  R-Calculus for Minimal Change
    4.1.1  R-Calculus SDL for a Statement
    4.1.2  R-Calculus SDL for a Set of Statements
  4.2  R-Calculus for Minimal Change
    4.2.1  Pseudo-Subconcept-Minimal Change
    4.2.2  R-Calculus TDL for a Statement
    4.2.3  R-Calculus TDL for a Set of Statements
  4.3  Discussion on R-Calculus fo Minimal Change
  References
5  R-Calculi for Modal Logic
  5.1  Propositional Modal Logic

  5.2  R-Calculus SM for Minimal Change
  5.3  R-Calculus TM for Minimal Change
  5.4  R-Modal Logic
    5.4.1  A Logical Language of R-Modal Logic
    5.4.2  R-Modal Logic
  References
6  R-Calculi for Logic Programming
  6.1  Logic Programming
    6.1.1  Gentzen Deduction Systems
    6.1.2  Dual Gentzen Deduction System
    6.1.3  Minimal Change
  6.2  R-Calculus SLP for C-Minimal Change
  6.3  R-Calculus TLP for Minimal Change
  References
7  R-Calculi for First-Order Logic
  7.1  R-Calculus for Minimal Change
    7.1.1  R-Calculus SFOL for a Formula
    7.1.2  R-Calculus SFOL for a Theory
  7.2  R-Calculus for Minimal Change
    7.2.1  R-Calculus T FOL for a Formula
    7.2.2  R-Calculus T FOE for a Theory
  References
8  Nonmonotonicity of R-Calculus
  8.1  Nonmonotonic Propositional Logic
    8.1.1  Monotonic Gentzen Deduction System G1
    8.1.2  Nonmonotonic Gentzen Deduction System Logic G2
    8.1.3  Nonmonotonicity of G2
  8.2  Involvement of F A in a Nonmonotonic Logic
    8.2.1  Default Logic
    8.2.2  Circumscription
    8.2.3  Autoepistemic Logic
    8.2.4  Logic Programming with Negation as Failure
  8.3  Correspondence Between R-Calculus and Default Logic
    8.3.1  Transformation from R-Calculus to Default Logic
    8.3.2  Transformation from Default Logic to R-Calculus
  References
9  Approximate R-Calculus
  9.1  Finite Injury Priority Method
    9.1.1  Post's Problem
    9.1.2  Construction with Oracle
    9.1.3  Finite Injury Priority Method
  9.2  Approximate Deduction
    9.2.1  Approximate Deduction System for First-Order Logic
  9.3  R-Calculus Fapp and Finite Injury Priority Method
    9.3.1  Construction with Oracle
    9.3.2  Approximate Deduction System F app
    9.3.3  Recursive Construction
    9.3.4  Approximate R-Calculus F rec
  9.4  Default Logic and Priority Method
    9.4.1  Construction of an Extension without Injury

    9.4.2  Construction of a Strong Extension with Finite Injury Priority Method
  References
10  An Application to Default Logic
  10.1  Default Logic and Subset-Minimal Change
    10.1.1  Deduction System SD for a Default
    10.1.2  Deduction System SD for a Set of Defaults
  10.2  Default Logic and Pseudo-subformula-minimal Change
    10.2.1  Deduction System TD for a Default
    10.2.2  Deduction System TD for a Set of Defaults
  10.3  Default Logic and Deduction-Based Minimal Change
    10.3.1  Deduction System UD for a Default
    10.3.2  Deduction System UD for a Set of Defaults
  References
11  An Application to Semantic Networks
  11.1  Semantic Networks
    11.1.1  Basic Definitions
    11.1.2  Deduction System G4 for Semantic Networks
    11.1.3  Soundness and Completeness Theorem
  11.2  R-Calculus for c-Minimal Change
    11.2.1  R-Calculus SSN for a Statement
    11.2.2  Soundness and Completeness Theorem
    11.2.3  Examples
  11.3  R-Calculus for -Minirnal Change
    11.3.1  R-Calculus TSN for a Statement
    11.3.2  Soundness and Completeness Theorem of TSN
  References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032