幫助中心 | 我的帳號 | 關於我們

衝擊動力學(英文版)

  • 作者:編者:余同希//邱信明|責編:佟麗霞
  • 出版社:清華大學
  • ISBN:9787302643623
  • 出版日期:2023/08/01
  • 裝幀:平裝
  • 頁數:267
人民幣:RMB 79 元      售價:
放入購物車
加入收藏夾

內容大鋼
    全書共分為三篇,第一篇「固體中的應力波」包括彈性波和彈塑性波兩章。第二篇「材料在高應變率下的動態行為」包含兩章,分別為不同應變率下的動態力學實驗技術和目前常用的高應變率下材料的本構關係。第三篇「結構在衝擊載荷下的動態響應」共分6章,著重分析剛塑性梁和板的動態響應,首先在第5章中介紹結構的慣性效應和塑性鉸,在第6章中分析了懸臂樑的動態響應,在第7章中探討了軸力和剪力對梁的動態行為的影響,然後在第8章中介紹了模態分析技術和界限定理,接下來在第9章給出了剛塑性板的動力響應分析,最後在第10章中給出了結構動態響應分析的若干案例。
    本書的特點是:著重闡述衝擊動力學的基本概念、基本模型和基本方法;同時涉及動態實驗方法,以及衝擊動力學在衝擊和防護問題中的應用。各章均附有習題和主要參考文獻,以便於教學和研究參考。
    本書作為教材,可供40學時左右的研究生課程採用;它將為固體力學、航空航天、汽車工程、防護工程及國防工程專業的研究生提供衝擊動力學領域的前沿科學知識和相關的研究方法,為他們從事有關的課題研究打下基礎。同時,也可以供相關專業的教師、研究人員、工程師和大學高年級學生自學和參考。

作者介紹
編者:余同希//邱信明|責編:佟麗霞

目錄
Preface vii
Introduction ix
Part 1 Stress Waves in Solids I
  1  Elastic Waves
    1.1  Elastic Wave in a Uniform Circular Bar
      1.1.1  The Propagation of a Compressive Elastic Wave
    1.2  Types of Elastic Wave
      1.2.1  Longitudinal Waves
      1.2.2  Transverse Waves
      1.2.3  Surface Wave (Rayleigh Wave)
      1.2.4  Interfacial Waves
      1.2.5  Waves in Layered Media (Love Waves)
      1.2.6  Bending (Flexural) Waves
    1.3  Reflection and Interaction of Waves
      1.3.1  Mechanical Impedance
      1.3.2  Waves When they Encounter a Boundary
      1.3.3  Reflection and Transmission of 1D Longitudinal Waves
    Questions 1
    Problems 1
  2  Elastic-Plastic Waves
    2.1  One-Dimensional Elastic-Plastic Stress Wave in Bars
      2.1.1  A Semi-Infinite Bar Made of Linear Strain-Hardening Material Subjected to a Step Load at its Free End
      2.1.2  A Semi-Infinite Bar Made of Decreasingly Strain-Hardening Material Subjected to a Monotonically Increasing Load at its Free End
      2.1.3  A Semi-Infinite Bar Made of Increasingly Strain-Hardening Material Subjected to a Monotonically Increasing Load at its Free End
      2.1.4  Unloading Waves
      2.1.5  Relationship Between Stress and Particle Velocity
      2.1.6  Impact of a Finite-Length Uniform Bar Made of Elastic-Linear Strain-Hardening Material on a Rigid Flat Anvil
    2.2  High-Speed Impact of a Bar of Finite Length on a Rigid Anvil (Mushrooming)
      2.2.1  Taylor's Approach
      2.2.2  Hawkyard's Energy Approach
    Questions 2
    Problems 2
Part 2  Dynamic Behavior of Materials under High Strain Rate
  3  Rate-Dependent Behavior of Materials
    3.1  Materials'Behavior under High Strain Rates
    3.2  High-Strain-Rate Mechanical Properties of Materials
      3.2.1  Strain Rate Effect of Materials under Compression
      3.2.2  Strain Rate Effect of Materials under Tension
      3.2.3  Strain Rate Effect of Materials under Shear
    3.3  High-Strain-Rate Mechanical Testing
      3.3.1  Intermediate-Strain-Rate Machines
      3.3.2  Split Hopkinson Pressure Bar (SHPB)
      3.3.3  Expanding-Ring Technique
    3.4  Explosively Driven Devices
      3.4.1  Line-Wave and Plane-Wave Generators
      3.4.2  Flyer Plate Accelerating _
      3.4.3  Pressure.Shear Impact Configuration
    3.5  Gun Systems

      3.5.3  Electric Rail Gun
    Problems 3
  4  Constitutive Equations at High Strain Rates
    4.1  Introduction to Constitutive Relations
    4.2  Empirical Constitutive Equations
    4.3  Relationship between Dislocation Velocity and Applied Stress
      4.3.1  Dislocation Dynamics
      4.3.2  Thermally Activated Dislocation Motion
      4.3.3  Dislocation Drag Mechanisms
      4.3.4  Relativistic Effects on Dislocation Motion
      4.3.5  Synopsis
    4.4  Physically Based Constitutive Relations
    4.5  Experimental Validation of Constitutive Equations
    Problems 4
Part 3  Dynamic Response of Structures to Impact and Pulse Loading
  5  Inertia Effects and Plastic Hinges
    5.1  Relationship between Wave Propagation and Global Structural Response
    5.2  Inertia Forces in Slender Bars
      5.2.1  Notations and Sign Conventions for Slender Links and Beams
      5.2.2  Slender Link in General Motion
      5.2.3  Examples of Inertia Force in Beams
    5.3  Plastic Hinges in a Rigid-Plastic Free-Free Beam under Pulse Loading
      5.3.1  Dynamic Response of Rigid-Plastic Beams
      5.3.2  A Free-Free Beam Subjected to a Concentrated Step Force 104boi
      5.3.3  Remarks on a Free-Free Beam Subjected to a Step Force at its Midpoint
    5.4  A Free Ring Subjected to a Radial Load
      5.4.1  Comparison between a Supported Ring and a Free Ring
    Questions 5
    Problems 5
  6  Dynamic Response of Cantilevers
    6.1  Response to Step Loading
    6.2  Response to Pulse Loading
      6.2.1  Rectangular Pulse
      6.2.2  General Pulse
    6.3  Impact on a Cantilever
    6.4  General Features of Traveling Hinges
    Problems 6
  7  Effects of Tensile and Shear Forces
    7.1  Simply Supported Beams with no Axial Constraint at Supports
      7.1.1  Phase Ⅰ
      7.1.2  Phase Ⅱ
    7.2  Simply Supported Beams with Axial Constraint at Supports
      7.2.1  Bending Moment and Tensile Force in a Rigid-Plastic Beam
      7.2.2  Beam with Axial Constraint at Support
      7.2.3  Remarks
    7.3  Membrane Factor Method in Analyzing the Axial Force Effect
      7.3.1  Plastic Energy Dissipation and the Membrane Factor
      7.3.2  Solution using the Membrane Factor Method
    7.4  Effect of Shear Deformation
    
      7.4.2  Bending-Shear Theory
    7.5  Failure Modes and Criteria of Beams under Intense Dynamic Loadings
      7.5.1  Three Basic Failure Modes Observed in Experiments
      7.5.2  The Elementary Failure Criteria
      7.5.3  Energy Density Criterion
      7.5.4  A Further Study of Plastic Shear Failures
    Questions 7
    Problems 7
  8  Mode Technique, Bound Theorems, and Applicability of the Rigid-PerfectlyPlastic Model
    8.1  Dynamic Modes of Deformation
    8.2  Properties of Modal Solutions
    8.3  Initial Velocity of the Modal Solutions
    8.4  Mode Technique Applications
      8.4.1  Modal Solution of the Parkes Problem
      8.4.2  Modal Solution for a Partially Loaded Clamped Beam
      8.4.3  Remarks on the Modal Technique
    8.5  Bound Theorems for RPP Structures
      8.5.1  Upper Bound of Final Displacement
      8.5.2  Lower Bound of Final Displacement
    8.6  Applicability of an RPP Model
    Problems 8
  9  Response of Rigid-Plastic Plates
    9.1  Static Load-Carrying Capacity of Rigid-Plastic Plates
      9.1.1  Load Capacity of Square Plates
      9.1.2  Load Capacity of Rectangular Plates
      9.1.3  Load-Carrying Capacity of Regular Polygonal Plates
      9.1.4  Load-Carrying Capacity of Annular Plate Clamped at its Outer Boundary
      9.1.5  Summary
    9.2  Dynamic Deformation of Pulse-Loaded Plates
      9.2.1  The Pulse Approximation Method
      9.2.2  Square Plate Loaded by Rectangular Pulse
      9.2.3  Annular Circular Plate Loaded by Rectangular Pulse Applied on its Inner Boundary
      9.2.4  Summary
    9.3  Effect of Large Deflection
      9.3.1  Static Load-Carrying Capacity of Circular Plates in Large Deflection
      9.3.2  Dynamic Response of Circular Plates with Large Deflection
    Problems 9
  10  Case Studies
    10.1  Theoretical Analysis of Tensor Skin
      10.1.1  Introduction to Tensor Skin
      10.1.2  Static Response to Uniform Pressure Loading
      10.1.3  Dynamic Response of Tensor Skin
      10.1.4  Pulse Shape
    10.2  Static and Dynamic Behavior of Cellular Structures
      10.2.1  Static Response of Heraoonal Honeycomb
      10.2.2  Static Response of Generalized Honeycombs
      10.2.3  Dynamic Response of Honeycomb Structures

      10.3.3  Optimal Design of Sandwich Plates
    10.4  Collision and Rebound of Circular Rings and Thin-Walled Spheres on Rigid Target
      10.4.1  Collision and Rebound of Circular Rings
      10.4.2  Collision and Rebound of Thin-Walled Spheres
      10.4.3  Concluding Remarks
   References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032