幫助中心 | 我的帳號 | 關於我們

Application of Machine Learning in Slope Stability Assessment(精)

  • 作者:編者:Wengang Zhang//Hanlong Liu//Lin Wang//Xing Zhu//Yanmei Zhang
  • 出版社:科學
  • ISBN:9787030761903
  • 出版日期:2023/01/01
  • 裝幀:精裝
  • 頁數:201
人民幣:RMB 208 元      售價:
放入購物車
加入收藏夾

內容大鋼
    This book focuses on the application of machine learning in slope stability assessment.The contents include: overview of machine learning approaches, the mainstream smart in-situ monitoring techniques, the applications of the main machine learning algorithms, including the supervised learning, unsupervised learning, semi- supervised learning, reinforcement learning, deep learning, ensemble learning, etc., in slopeengineering and landslide prevention, introduction of the smart in-situ monitoring and slope stability assessment based on two well-documented case histories, the prediction of slope stability using ensemble learning techniques, the application of Long Short-Term Memory Neural Network and Prophet Algorithm in Slope Displacement Prediction, displacement prediction of Jiuxianping landslide using gated recurrent unit (GRU) networks, seismic stability analysis of slopes subjected to water level changes using gradient boosting algorithms, efficient reliability analysis of slopes in spatially variable soils using XGBoost, efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms, as well as the future work recommendation.The authors also provided their own thoughts learnt from these applications as well as work ongoing and future recommendations.

作者介紹
編者:Wengang Zhang//Hanlong Liu//Lin Wang//Xing Zhu//Yanmei Zhang

目錄
1  Overview
  1.1  Slope Stability Analysis Methods
    1.1.1  Theoretical Solutions
    1.1.2  Numerical Simulations
    1.1.3  Physical Experimentations
  1.2  Remote Monitoring Methods
  1.3  Machine Learning Approaches
    1.3.1  What is Machine Learning
    1.3.2  How Machine Learning Works
    1.3.3  Machine Learning Methods
    1.3.4  What is Deep Learning
    1.3.5  Deep Learning Versus Machine Learning
    1.3.6  How Deep Learning Works
  1.4  Organization of This Book
  References
2  Machine Learning Algorithms
  2.1  Supervised Learning
  2.2  Unsupervised Learning
  2.3  Semi-supervised Learning
  2.4  Reinforcement Learning
  2.5  Regression Algorithm
  2.6  Case-Based Algorithm
  2.7  Regularization Method
  2.8  Decision Tree
  2.9  Bayesian Method
  2.10  Kernel-Based Algorithm
  2.11  Clustering
  2.12  Association Rule Learning
  2.13  Artificial Neural Network
  2.14  Deep Learning
  2.15  Dimension Reduction
  2.16  Ensemble Learning
  References
3  Real-Time Monitoring and Early Warning of Landslide
  3.1  Introduction
  3.2  Real-Time Monitoring Network
  3.3  Intelligent Early Warning System
    3.3.1  Early Warning Model and Alert Criteria
    3.3.2  3D-Web Early Warning System
  3.4  Application
    3.4.1  Introduction of Longjing Rocky Landslide
    3.4.2  Geological Setting and Deformation History
    3.4.3  Successful Monitoring and Early Warning
  3.5  Conclusions
  References
4  Prediction of Slope Stability Using Ensemble Learning Techniques
  4.1  Introduction
  4.2  Study Area
    4.2.1  Topographic Conditions
    4.2.2  Geological Conditions

    4.2.3  The Features of Landslide Cases
  4.3  Methodology
    4.3.1  Extreme Gradient Boosting
    4.3.2  Random Forest
    4.3.3  Data Preprocessing and Performance Measures
  4.4  Results and Discussion
  4.5  Summary and Conclusions
  References
5  Landslide Susceptibility Research Combining Qualitative Analysis and Quantitative Evaluation: A Case Study of Yunyang County in Chongqing, China
  5.1  Introduction
  5.2  Study Area
  5.3  Method Explanation
    5.3.1  Random Forest
    5.3.2  Grid Search
    5.3.3  Performance Measure
  5.4  Methodology
    5.4.1  Data Collection and Preparation
    5.4.2  Model Development and Application
  5.5  Results
  5.6  Discussion
    5.6.1  Feature Importance Analysis
    5.6.2  Model Comparison
  5.7  Summary and Conclusion
  References
6  Application of Transfer Learning to Improve Landslide Susceptibility Modeling Performance
  6.1  Introduction
  6.2  Study Area
  6.3  Transfer Learning
  6.4  Methodology
    6.4.1  Data Preparation
    6.4.2  Data Extraction and Model Preparation
    6.4.3  Model Application and Evaluation
  6.5  Results and Discussion
  6.6  Summary and Conclusion
  References
7  Displacement Prediction of Jiuxianping Landslide Using GRU Networks
  7.1  Introduction
  7.2  Machine Learning Techniques
    7.2.1  Multivariate Adaptive Regression Splines
    7.2.2  Random Forest Regression
    7.2.3  Artificial Neural Network
    7.2.4  Gated Recurrent Unit
  7.3  Case Study: Jiuxianping Landslide
    7.3.1  Geological Conditions
    7.3.2  Deformation Characteristics Analysis
    7.3.3  Decomposition of the Curnulative Displacement
    7.3.4  Performance Measures
  7.4  Results and Discussion
    7.4.1  Trend Displacement Prediction
    7.4.2  Periodic Displacement Prediction

    7.4.3  Cumulative Displacement Prediction
  7.5  Summary and Conclusions
  References
8  Efficient Seismic Stability Analysis of Slopes Subjected to Water Level Changes Using Gradient Boosting Algorithms
  8.1  Introduction
  8.2  Methodologies
    8.2.1  Categorical Boosting
    8.2.2  Light Gradient Boosting Machine
    8.2.3  Extreme Gradient Boosting
  8.3  Implementation Procedure
  8.4  Illustrative Example
    8.4.1  Database Preparation for Model Calibration
  8.5  Summary and Conclusions
  References
9  Efficient Reliability Analysis of Slopes in Spatially Variable Soils Using XGBoost
  9.1  Introduction
  9.2  Deterministic Analysis of Earth Dam Slope Stability
    9.2.1  Seepage Analysis Under Steady Seepage Condition
    9.2.2  Slope Stability Analysis
  9.3  Random Field Modeling of Spatially Variable Soil Properties
  9.4  XGBoost-Based Reliability Analysis Approach
    9.4.1  Introduction of XGBoost
    9.4.2  Evaluation of the Failure Probability Using XGBoost
  9.5  Implementation Procedure
  9.6  Application to Ashigong Earth Dam Slope
    9.6.1  Construction of XGBoost Model
    9.6.2  Effect of COV on the Earth Dam Slope Failure Probability
  9.7  Summary and Conclusions
  References
10  Efficient Time-Variant Reliability Analysis of Bazimen Landslide in the TGRA Using XGBoost and LightGBM
  10.1  Introduction
  10.2  Methodology
    10.2.1  Extreme Gradient Boosting
    10.2.2  Light Gradient Boosting Machine
    10.2.3  Hyperparameter Optimization
    10.2.4  Evaluation Indicators
  10.3  ML-Based Time-Variant Reliability Analysis
    10.3.1  Monte Carlo Simulation
    10.3.2  Calculation of Time-Variant Failure Probability
  10.4  Implementation Procedure
  10.5  Application to Bazimen Landslide in the TGRA
    10.5.1  Construction of XGBoost and LightGBM Models
    10.5.2  Performance of Model Averaging
    10.5.3  Comparison of the Proposed Approaches and Prophet Model
    10.5.4  Feature Importance Analysis
  10.6  Summary and Conclusions
  References
11  Future Work Recommendation
Appendix

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032