幫助中心 | 我的帳號 | 關於我們

非線性動力學系統的計算方法(航天工程理論及應用)(英文版)/西北工業大學精品學術著作

  • 作者:Xuechuan Wang//Xiaokue Yue//Honghua Dai//Haoyang Feng//Satya N.Atluri|責編:徐楊峰
  • 出版社:科學
  • ISBN:9787030739391
  • 出版日期:2023/06/01
  • 裝幀:平裝
  • 頁數:230
人民幣:RMB 140 元      售價:
放入購物車
加入收藏夾

內容大鋼
    非線性動力學系統目前已經成為科學研究和工程應用的重點關注對象。由於缺乏齊次性和疊加性,非線性系統的解往往無法解析獲得,只能求助於數值計算方法。然而,面對複雜的強非線性系統,傳統數值方法在精度、效率、穩定性等方面常常受到限制,難以滿足實際科研工作和工程任務中的模擬計算需求,亟需引入新的思路和方法,推動非線性系統解算的進一步發展。本書根據近十年來相關領域的部分研究成果和作者的研究工作,介紹了非線性動力學系統的一系列全局估計方法和局部計算方法。從經典的漸進方法、有限差分方法和加權殘餘法開始,對各類典型的非線性動力學系統計算方法進行梳理和總結。在理清已有方法發展脈絡的同時,提出了一些新的計算方法研究思路,並借此導出了局部變分迭代法等一系列新型高性能計算方法。本書不僅從理論上對強非線性動力學系統的計算方法進行了歸納、總結和發展,也從具體的航空航天工程問題出發,對方法的實際應用進行了探討。
    本書可供航空航天相關領域科研工作者和工程技術人員閱瀆,也可供航空航天相關專業的高等院校高年級本科生和研究生學習參考。

作者介紹
Xuechuan Wang//Xiaokue Yue//Honghua Dai//Haoyang Feng//Satya N.Atluri|責編:徐楊峰

目錄
Preface
1. Introduction
  1.1  The weighted residual methods
    1.1.1  Problem description
    1.1.2  Primal methods
    1.1.3  Mixed methods
  1.2  Application of weighted residual methods
    1.2.1  Transient motions
    1.2.2  Periodic motions
  1.3  Finite difference methods
    1.3.1  Explicit methods
    1.3.2  Implicit methods
  1.4  Asymptotic methods
    1.4.1  Perturbation method
    1.4.2  Adomian decomposition method
    1.4.3  Picard iteration method
  References
2. Harmonic Balance Method and Time Domain Collocation Method
  2.1  Time collocation in a period of oscillation
  2.2  Relationship between collocation and harmonic balance
    2.2.1  Harmonic balance method
    2.2.2  High dimensional harmonic balance method
    2.2.3  Equivalence between HDHB and collocation
  2.3  Initialization of Newton-Raphson method
    2.3.1  Initial values for undamped system
    2.3.2  Initial values for damped system
  2.4  Numerical examples
    2.4.1  Undamped Dulling equation
    2.4.2  Damped Duffing equation
  Appendix A
  Appendix B
  References
3. Dealiasing for Harmonic Balance and Time Domain Collocation Methods
  3.1  Governing equations of the airfoil model
  3.2  Formulation of the HB method
    3.2.1  Numerical approximation of Jacobian matrix
    3.2.2  Explicit Jacobian matrix of HB
    3.2.3  Mathematical aliasing of HB method
  3.3  Formulation of the TDC method
    3.3.1  Explicit Jacobian matrix of TDC
    3.3.2  Mathematical aliasing of the TDC method
  3.4  Reconstruction harmonic balance method
  3.5  Numerical examples
    3.5.1  RK4 results and spectral analysis
    3.5.2  HBEJ vs. HBNJ
    3.5.3  Aliasing analysis of the HB and TDC methods
    3.5.4  Dealiasing via a marching procedure
  Appendix
  References
4. Application of Time Domain Collocation in Formation Flying of Satellites

  4.1  TDC searching scheme for periodic relative orbits
  4.2  Initial values for TDC method
    4.2.1  The C-W equations
    4.2.2  The T-H equations
  4.3  Evaluation of TDC search scheme
    4.3.1  Projected closed orbit
    4.3.2  Closed loop control
  4.4  Numerical results
  Appendix
  References
5. Local Variational Iteration Method
  5.1  VIM and its relationship with PIM and ADM
    5.1.1  VIM
    5.1.2  Comparison of VIM with PIM and ADM
  5.2  Local variational iteration method
    5.2.1  Limitations of global VIM
    5.2.2  Variational homotopy method
    5.2.3  Methodology of LVIM
  5.3  Conclusion
  References
6. Collocation in Conjunction with the Local Variational Iteration Method
  6.1  Modifications of LVIM
    6.1.1  Algorithm-1
  6,1.2  Algorithm-2
    6.1.3  Algorithm-3
  6.2  Implementation of LVIM
    6.2.1  Discretization using collocation
    6.2.2  Collocation of algorithm-1
    6.2.3  Collocation of algorithm-2
    6.2.4  Collocation of algorithm-3
  6.3  Numerical examples
    6.3.1  The forced Duffing equation
    6.3.2  The Lorenz system
    6.3.3  The multiple coupled Duffing equations
  6.4  Conclusion
  References
7. Application of the Local Variational Iteration Method in Orbital Mechanics
  7.1  Local variational iteration method and quasi-linearization method
    7.1.1  Local variational iteration method
    7.1.2  Quasi-linearization method
  7.2  Perturbed orbit propagation
    7.2.1  Comparison of local variational iteration method with the modified Chebyshev picard iteration method
    7.2.2  Comparison of FAPI with Runge-Kutta 12(10)
  7.3  Perturbed Lambert's problem
    7.3.1  Using FAPI
    7.3.2  Using the fish-scale-growing method
    7.3.3  Using quasilinearization and local variational iteration method
  7.4  Conclusion
  References
8. Applications of the Local Variational Iteration Method in Structural Dynamics

  8.1  Elucidation of LVIM in structural dynamics
    8.1.1  Formulas of the local variational iteration method
    8.1.2  Large time interval collocation
    8.1.3  LVlM algorithms for structural dynamical system
  8.2  Mathematical model of a buckled beam
  8.3  Nonlinear vibrations of a buckled beam
    8.3.1  Bifurcations and chaos
    8.3.2  Comparison between HHT and LVIM algorithms
  8.4  Conclusion
  Appendix A
  Appendix B
  Appendix C
  References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032