幫助中心 | 我的帳號 | 關於我們

基於機器視覺的金屬生產及服役過程表面溫度與缺陷在線監測技術(英文版)

  • 作者:編者:Zhou Dongdong//Xu Ke//Yuan Shengfu//Liu Xiaoming|責編:盧敏
  • 出版社:冶金工業
  • ISBN:9787502494070
  • 出版日期:2023/03/01
  • 裝幀:平裝
  • 頁數:256
人民幣:RMB 128 元      售價:
放入購物車
加入收藏夾

內容大鋼
    智能感知技術是智能製造落地應用及生產過程式控制制、預報及工藝優化的基礎,近年來隨著機器視覺及人工智慧技術的快速發展,在鋼鐵領域已有大量基於機器視覺的典型應用,比如溫度檢測、表面缺陷檢測、尺寸檢測、廢鋼識別、輔助定位、物流號識別等,對提高鋼鐵行業質量檢測智能化、推動智能製造生根落地、提高生產效率及產品質量起到了良好的推動作用。針對目前國際前沿的機器視覺智能感知技術在鋼鐵行業的廣泛應用情況,本書將首次成體系介紹基於機器視覺的智能感知技術在鋼鐵行業應用的多學科交叉理論體系和部分研究成果。

作者介紹
編者:Zhou Dongdong//Xu Ke//Yuan Shengfu//Liu Xiaoming|責編:盧敏

目錄
1  Temperature Detection Methods Based on Machine Vision
  1.1  Colorimetric thermometric model
    1.1.1  Basic assumptions
    1.1.2  The relationship of image grayscale and radiant temperature
    1.1.3  Colorimetric temperature measurement model
  1.2  Blackbody furnace calibration process
  1.3  Image noise filtering method
    1.3.1  Adaptive smooth filter denoising method
    1.3.2  Adaptive median filter denoising method
    1.3.3  Geometric mean filtering denoising method
    1.3.4  Over-limit neighborhood filtering denoising method
    1.3.5  Bilateral filter denoising method
    1.3.6  Wavelet filter denoising method
  1.4  Image edge detection method
    1.4.1  Roberts operator
    1.4.2  Sobel operator
    1.4.3  Prewitt operator
    1.4.4  Log operator
    1.4.5  Canny operator
    1.4.6  Morphological edge detection method
2  Temperature Detection in the Raceway Zone of Blast Furnace
  2.1  Introduction
  2.2  Theory and experiments
  2.3  Methods to improve the temperature detection accuracy
    2.3.1  Blackbody calibration for digital imaging system
    2.3.2  Denoising for tuyere images
    2.3.3  Edge detection for tuyere images
  2.4  Combustion behavior and temperature in tuyere zone of BF
  2.5  PCI process on the temperature variation in raceway zone of BF
    2.5.1  Flame image temperature calculation
    2.5.2  PCI rates
    2.5.3  PCI cease processes
    2.5.4  None PCI process
  References
3  Uniformity and Activity of Blast Furnace Hearth
  3.1  Introduction
  3.2  Definitions of uniformity index and activity index
  3.3  Experiments and temperature calculation
  3.4  Uniformity index and activity index
    3.4.1  Local uniformity index and local activity index
    3.4.2  Ul and AI
  References
4  Tuyere Coke Size and Temperature Distribution of BF
  4.1  Introduction
  4.2  Theory
    4.2.1  Tuyere coke size detection
    4.2.2  Temperature distribution calculation
  4.3  Experiments
  4.4  Results of tuyere coke size and temperature distribution
    4.4.1  Calculation of tuyere coke size and temperature distribution of raceway zone

    4.4.2  Results analyze
    4.4.3  Calculation of coke belt length (CBL) in raceway zone of BF
  References
5  Surface Temperature of Rail Steel Plates
  5.1  Introduction
  5.2  Emissivity calculation model
  5.3  Theory
  5.4  Experiments
    5.4.1  Digital imaging system
    5.4.2  Calibration for digital imaging system
    5.4.3  Surface temperature variation during the rolling process
  5.5  Temperature calculation results
    5.5.1  Noise filtering results
    5.5.2  Temperature detection results during rolling passes
  References
6  Surface Defect Recognition of Aluminum Strips
  6.1  Introduction
  6.2  Aluminum strips images
  6.3  NSST-KLPP model
  6.4  Experiment and discussions
    6.4.1  Experimental procedure
    6.4.2  Experiment results
    6.4.3  Comparison with common methods
    6.4.4  Comparison of NSST,contourlet and DST
  References
7  Surface Inspection of Continuous Casting Slabs
  7.1  Introduction
  7.2  Surface defects
  7.3  DNST-GLCM-KSR model
  7.4  Defect recognition algorithm
  7.5  Defect recognition results
  References
8  Surface Defect Recognition of Metals
  8.1  Introduction
  8.2  Construction of ICT
  8.3  Defect recognition algorithms
  8.4  Defect recognition results
  References
9  Edge Detection of Retinal OCT Image
  9.1  Introduction
  9.2  Complex shearlet transform
  9.3  Construction of detection formula
  9.4  Numerical and visual experiments
  9.5  Retinal OCT experiment
  References
10  Detection of Character and Surface Defect in Steel Rail
  10.1  Introduction
  10.2  Experimental platform and experimental method
  10.3  Methods
    10.3.1  Photometric stereoscopic 3D reconstruction method

    10.3.2  Character recognition method based on deep learning
  10.4  Detection results
    10.4.1  Defect detection results
    10.4.2  Character recognition results
  References
11  Image Quality Improvement for Underwater Visual Inspections
  11.1  Introduction
  11.2  ACE and DCP model
    11.2.1  ACE algorithm
    11.2.2  DCP with brightness correction
  11.3  Underwater images of visual inspection
  11.4  Results analyzes
    11.4.1  Qualitative evaluation
    11.4.2  Quantitative evaluation
    11.4.3  Field application
  References
12  The Visual Inspection of Defects in Nuclear Power Plant Reactors
  12.1  Introduction
  12.2  Visual examination of NPP reactors
  12.3  Photometric stereo technique
  12.4  D shape reconstruction of defects
    12.4.1  Photometric stereo system
    12.4.2  Estimation of light direction and intensity
    12.4.3  D reconstruction using photometric stereo
  12.5  Results analyzes
  References
13 Improved Visual Inspection for Nozzle Inner Radius based on Panoramic Imaging
  13.1  Introduction
  13.2  Detection of defects on nozzle inner radius of an RPV
  13.3  Proposed panaromic imaging methods
    13.3.1  Image mosaicking method
    13.3.2  Image optimization method
    13.3.3  Defect measurement method
  13.4  Experimental evaluation
  References
14  Surface Quality Evaluation of Heavy and Medium Plate
  14.1  Introduction
  14.2  The surface defects formation and the partitioning of HMP
    14.2.1  Analyzes of defects formation
    14.2.2  Procedure for detecting flaws
    14.2.3  Defects in partitioning
  14.3  AHP evolution model
  14.4  Results analyzes
  References
15  Intelligent Manufacturing Technology in the Steel Industry of China
  15.1  Introduction
  15.2  Intelligent manufacturing in the steel industry of China
    15.2.1  General briefing on intelligent manufacturing in the steel industry
    15.2.2  Aims for intelligent manufacturing
    15.2.3  Framework for intelligent manufacturing

  15.3  Typical models for intelligent manufacturing of steel industry
    15.3.1  Rolling process intelligent manufacturing model
    15.3.2  Steelmaking & Rolling process intelligent manufacturing model
  15.4  Key technologies for intelligent manufacturing in steel industry
    15.4.1  Online detection technologies
    15.4.2  Quality controlling technology for the entire procedure of the steel industry
    15.4.3  Equipment troubleshooting technology
    15.4.4  Intelligent machinery
  References

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032