ACKNOWLEDGMENT LIST OF SYMBOLS CHAPTER Ⅰ BASIC CONCEPTS 1.1 Historical remarks 1.2 Distribution Function 1.3 Modified Levy metric 1.4 Triangular Norms 1.5 Triangle Function 1.6 Duality ofττ 1.7 Probabilistic Metric Spaces 1.8 Topological Structure for PM Spaces 1.8.1 Strong Topology 1.8.2 The Strong Uniformity 1.8.3 Convergence and Continuity 1.8.4 Completeness of PM space 1.9 Probabilistic Diameter and Bounded set 1.10 Probabilistic Hausdorff Distance 1.11 Probabilistic Normed Spaces 1.12 Topological Structure of PN Spaces 1.13 Some special classes of PN spaces 1.13.1 Equilateral PN spaces 1.13.2 EN spaces 1.13.3 Lp-spaces and Orlicz spaces CHAPTER Ⅱ SOME GENERALIZED SPACES 2.1 Random Modular Spaces 2.2 Some Examples 2.3 Probabilistic Ultra Metric Spaces 2.4 Probabilistic Hyperspace CHAPTER Ⅲ CONTRACTION MAPPINGS AND FIXED POINT THEORY 3.1 Contraction mappings 3.2 Fixed Point on Probabilistic Ultra metric spaces 3.3 Contraction mapping on probabilistic Hyperspaces 3.4 An Application 3.5 Fixed Point on Probabilistic Banach Spaces CHAPTER Ⅳ FIXED POINT THEOREM FOR MULTI-VALUED CONTRACTION MAPPINGS IN PM-SPACES 4.1 Common fixed point of multi-valued generalized Contraction mappings 4.2 Coincidence point of compatible multi-valued mappings CHAPTER Ⅴ APPROXIMATE FIXED POINT THEOREMS IN PROBABILISTIC STRUCTURE 5.1 ε-continuous mapping 5.2 Approximate fixed points in RN-spaces 5.3 Approximate fixed points in PM-spaces CHAPTER Ⅵ FIXED POINT THEOREM FOR DISCONTINUOUS SELF MAPPINGS IN PROBABILISTIC METRIC SPACES 6.1 Contineufication of mappings 6.2 Fixed Point theorem CHAPTER Ⅶ INTUITIONISTIC FUZZY QUASI-METRIC SPACES 7.1 Introduction 7.2 Fuzzy quasi-metric spaces 7.3 Topology induced by IFQ-metric 7.4 Quasi-metrizability of topology on IFQ-metric spaces 7.5 Bicomplete IFQ-metric spaces
CHAPTER Ⅷ FIXED POINT THEOREM IN INTUITIONISTIC FUZZY METRIC SPACES 8.1 Contraction mapping 8.2 Fixed Point Theorem REFERENCES 編輯手記