幫助中心 | 我的帳號 | 關於我們

模式識別的馬爾可夫模型(第2版英文版香農信息科學經典)

  • 作者:(德)格諾特·芬克|責編:陳亮//劉葉青
  • 出版社:世圖出版公司
  • ISBN:9787519296940
  • 出版日期:2023/01/01
  • 裝幀:平裝
  • 頁數:276
人民幣:RMB 89 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書為修訂和擴展的新版本,新版里包括更為詳細的EM演算法處理、有效的近似維特比訓練程序描述,和基於n-最佳搜索的困惑測度和多通解碼覆蓋的理論推導。為了支持對馬爾可夫模型理論基礎的討論,還特彆強調了實際演算法的解決方案。具體來說,本書的特點如下:介紹了馬爾可夫模型的形式化框架;涵蓋了概率量的魯棒處理;提出了具體應用領域隱馬爾可夫模型的配置方法;描述了高效處理馬爾可夫模型的重要方法,以及模型對不同任務的適應性;研究了在複雜解空間中由馬爾可夫鏈和隱馬爾可夫模型聯合應用而產生的搜索演算法;回顧了馬爾可夫模型的。

作者介紹
(德)格諾特·芬克|責編:陳亮//劉葉青

目錄
  1  Introduction
    1.1  Thematic Context
    1.2  Functional Principles of Markov Models
    1.3  Goal and Structure of the Book
  2  Application Areas
    2.1  Speech
    2.2  Writing
    2.3  Biological Sequences
    2.4  Outlook
Part I  Theory
  3  PartFoundations of Mathematical Statistics
    3.1  Random Experiment, Event, and Probability
    3.2  Random Variables and Probability Distributions
    3.3  Parameters of Probability Distributions
    3.4  Normal Distributions and Mixture Models
    3.5  Stochastic Processes and Markov Chains
    3.6  Principles of Parameter Estimation
      3.6.1  Maximum Likelihood Estimation
      3.6.2  Maximum a Posteriori Estimation
    3.7  Bibliographical Remarks
  4  PartVector Quantization and Mixture Estimation
    4.1  Definition
    4.2  Optimality
      4.2.1  Nearest-Neighbor Condition
      4.2.2  Centroid Condition
    4.3  Algorithms for Vector Quantizer Design
      4.3.1  Lloyd's Algorithm
      4.3.2  LBG Algorithm
      4.3.3  k-Means Algorithm
    4.4  Estimation of Mixture Density Models
      4.4.1  EM Algorithm
      4.4.2  EM Algorithm for Gaussian Mixtures
    4.5  Bibliographical Remarks
  5  Hidden Markov Models
    5.1  Definition
    5.2  Modeling Outputs
    5.3  Use Cases
    5.4  Notation
    5.5  Evaluation
      5.5.1  The Total Output Probability
      5.5.2  Forward Algorithm
      5.5.3  The Optimal Output Probability
    5.6  Decoding
      5.6.1  Viterbi Algorithm
    5.7  Parameter Estimation
      5.7.1  Foundations
      5.7.2  Forward-Backward Algorithm
      5.7.3  Training Methods
      5.7.4  Baum-Welch Algorithm
      5.7.5  Viterbi Training

      5.7.6  Segmental k-Means Algorithm
      5.7.7  Multiple Observation Sequences
    5.8  Model Variants
      5.8.1  Alternative Algorithms
      5.8.2  Alternative Model Architectures
    5.9  Bibliographical Remarks
  6  n-Gram Models
    6.1  Definition
    6.2  Use Cases
    6.3  Notation
    6.4  Evaluation
    6.5  Parameter Estimation
      6.5.1  Redistribution of Probability Mass
      6.5.2  Discounting
      6.5.3  Incorporation of More General Distributions
      6.5.4  Interpolation
      6.5.5  Backing off
      6.5.6  Optimization of Generalized Distributions
    6.6  Model Variants
      6.6.1  Category-Based Models
      6.6.2  Longer Temporal Dependencies
    6.7  Bibliographical Remarks
Part II  Practice
  7  Computations with Probabilities
    7.1  Logarithmic Probability Representation
    7.2  Lower Bounds for Probabilities
    7.3  Codebook Evaluation for Semi-continuous HMMs
    7.4  Probability Ratios
  8  Configuration of Hidden Markov Models
    8.1  Model Topologies
    8.2  Modularization
      8.2.1  Context-Independent Sub-word Units
      8.2.2  Context-Dependent Sub-word Units
    8.3  Conpound Models
    8.4  Profile HMMs
    8.5  Modeling Outputs
  9  Robust Parameter Estimation
    9.1  Feature Optimization
      9.1.1  Decorrelation
      9.1.2  Principal Component Analysis I
      9.1.3  Whitening
      9.1.4  Dimensionality Reduction
      9.1.5  Principal Component Analysis IⅡ
      9.1.6  Linear Discriminant Analysis
    9.2  Tying
      9.2.1  Sub-model Units
      9.2.2  State Tying
      9.2.3  Tying in Mixture Models
    9.3  Initialization of Parameters
  10  Efficient Model Evaluation

    10.1  Efficient Evaluation of Mixture Densities
    10.2  Efficient Decoding of Hidden Markov Models
      10.2.1  Beam Search Algorithm
    10.3  Efficient Generation of Recognition Results
      10.3.1  First-Best Decoding of Segmentation Units
      10.3.2  Algorithms for N-Best Search
    10.4  Efficient Parameter Estimation
      10.4.1  Forward–Backward Pruning
      10.4.2  Segmental Baum-Welch Algorithm
      10.4.3  Training of Model Hierarchies
    10.5  Tree-Like Model Organization
      10.5.1  HMM Prefix Trees
      10.5.2  Tree-Like Representation for n-Gram Models
  11  Model Adaptation
    11.1  Basic Principles
    11.2  Adaptation of Hidden Markov Models
      11.2.1  Maximum-Likelihood Linear-Regression
    11.3  Adaptation of n-Gram Models
      11.3.1  Cache Models
      11.3.2  Dialog-Step Dependent Models
      11.3.3  Topic-Based Language Models
  12  Integrated Search Methods
    12.1  HMM Networks
    12.2  Multi-pass Search
    12.3  Search Space Copies
      12.3.1  Context-Based Search Space Copies
      12.3.2  Time-Based Search Space Copies
      12.3.3  Language-Model Look-Ahead
    12.4  Time~Synchronous Parallel Model Decoding
      12.4.1  Generation of Segment Hypotheses
      12.4.2  Language-Model-Based Search
Part III  Systems
  13  Speech Recognition
    13.1  Recognition System of RWTH Aachen University
      13.1.1  Feature Extraction
      13.1.2  Acoustic Modeling
      13.1.3  Language Modeling
      13.1.4  Search
    13.2  BBN Speech Recognizer BYBLOS
      13.2.1  Feature Extraction
      13.2.2  Acoustic Modeling
      13.2.3  Language Modeling
      13.2.4  Search
    13.3  ESMERALDA
      13.3.1  Feature Extraction
      13.3.2  Acoustic Modeling
      13.3.3  Statistical and Declarative Language Modeling
      13.3.4  Incremental Search
  14  Handwriting Recognition
    14.1  Recognition System by BBN

      14.1.1  Preprocessing
      14.1.2  Feature Extraction
      14.1.3  Script Modeling
      14.1.4  Language Modeling and Search
    14.2  Recognition System of RWTH Aachen University
      14.2.1  Preprocessing
      14.2.2  Feature Extraction
      14.2.3  Script Modeling
      14.2.4  Language Modeling and Search
    14.3  ESMERALDA Offline Recognition System
      14.3.1  Preprocessing
      14.3.2  Feature Extraction
      14.3.3  Handwriting Model
      14.3.4  Language Modeling and Search
    14.4  Bag-of-Features Hidden Markov Models
  15  Analysis of Biological Sequences
    15.1  HMMER
      15.1.1  Model Structure
      15.1.2  Parameter Estimation
      15.1.3  Interoperability
    15.2  SAM
    15.3  ESMERALDA
      15.3.1  Feature Extraction
      15.3.2  Statistical Models of Proteins
References
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032