幫助中心 | 我的帳號 | 關於我們

連續系統資訊理論(英文版香農信息科學經典)

  • 作者:(日)井原俊輔|責編:陳亮//劉葉青
  • 出版社:世圖出版公司
  • ISBN:9787519296889
  • 出版日期:2023/01/01
  • 裝幀:平裝
  • 頁數:308
人民幣:RMB 89 元      售價:
放入購物車
加入收藏夾

內容大鋼
    《連續系統資訊理論》由日本名古屋大學數學系的教授井原俊輔(Shunsuke Ihara)所著,在數學、連續系統資訊理論及其應用方面頗有建樹,發表了多篇有關論文和著作。
    本書系統地以數學方式分析了嫡和隨機過程,特別是高斯過程及其在信息理論中的應用。全書內容大致分為兩部分:第一部分對嫡在資訊理論、概率論和數理統計中的統一處理進行了詳細的介紹;第二部分主要討論連續通信系統的資訊理論,專註于高斯通道及其在實踐中的應用。書中各部分都附有相應示例和練習,便於讀者理解與檢驗所學,書末尾還有大量參考文獻目錄,可為讀者進一步學習提供參考。本書的一個鮮明特點是,與大多數強調離散的資訊理論書籍不同,本書作者強調的是連續的通信系統。

作者介紹
(日)井原俊輔|責編:陳亮//劉葉青

目錄
Preface
Chapter 1.Entropy
  1.1  Information Transmission
  1.2  Entropy
  1.3  Entropy for Continuous Distributions
  1.4  Relative Entropy
  1.5  Properties of Relative Entropy
  1.6  Mutual Information
  1.7  Rate-Distortion Function
  1.8  Entropy for Gaussian Distributions Historical Notes
Chapter 2.Stochastic Processes and Entropy
  2.1  Entropy Rate
  2.2  Discrete Time Stationary Processes
  2.3  Discrete Time Markov Stationary Processes
  2.4  Entropy Rate of a Stationary Gaussian Process
  2.5  Continuous Time Stationary Processes
  2.6  Band Limited Processes
  2.7  Discrete Time Observation of Continuous Time Processes Historical Notes
Chapter 3.Maximum Entropy Analysis
  3.1  Maximum Entropy and Minimum Relative Entropy
  3.2  Large Deviation Theorems
  3.3  Maximum Entropy Spectral Analysis
  3.4  Hypothesis Testing
  3.5  Hypothesis Testing for Stationary Gaussian Processes Historical Notes
Chapter 4.Theory of Information Transmission
  4.1  Model of Communication Systems
  4.2  Information Stability
  4.3  Source Coding Theorems
  4.4  Channel Capacity
  4.5  Channel Coding Theorems
  4.6  Fundamental Theorem in Information Transmission Historical Notes
Chapter 5.Discrete Time Gaussian Channels
  5.1  Mutual Information in Channels with Additive Noise
  5.2  Discrete Gaussian Channels
  5.3  Mutual Information in Gaussian Systems
  5.4  Capacity of Discrete White Gaussian Channels
  5.5  Capacity of Discrete Gaussian Channels without Feedback
  5.6  Optimal Codings in Discrete White Gaussian Channels
  5.7  Capacity of Discrete Gaussian Channels with Feedback
  5.8  Rate-Distortion Function of a Discrete Gaussian Message
  5.9  Coding Theorem for Discrete Gaussian Channels Historical Notes
Chapter 6.Continuous Time Gaussian Channels
  6.1  Continuous Gaussian Channels
  6.2  Mutual Information in White Gaussian Channels (I)
  6.3  Mutual Information in White Gaussian Channels (II)
  6.4  Capacity of White Gaussian Channels
  6.5  Optimal Codings in White Gaussian Channels
  6.6  Gaussian Channels without Feedback
  6.7  Stationary Gaussian Channels
  6.8  Gaussian Channels with Feedback

  6.9  Rate-Distortion Function of a Gaussian Process
  6.10  Coding Theorem for Gaussian Channels Historical Notes
Appendix.Preparation from Probability Theory
  A.1  Probability and Random Variable
  A.2  Conditional Probability and Conditional Expectation
  A.3  Stochastic Integral
Bibliography
List of Symbols
Subject Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032