幫助中心 | 我的帳號 | 關於我們

多元實函數教程(英文)/國外優秀數學著作原版系列

  • 作者:(美)馬丁·莫斯科維茨//福蒂奧斯·帕里奧詹尼斯|責編:杜瑩雪//張嘉芮
  • 出版社:哈爾濱工業大學
  • ISBN:9787576704358
  • 出版日期:2022/09/01
  • 裝幀:平裝
  • 頁數:725
人民幣:RMB 118 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書的主題是眾多學科的基礎,因此對低年級數學研究生,以及數學、物理學、化學、生物學、工程學甚至經濟學專業的高年級本科生都有用。本書包括8章,第1章和第2章處理了歐幾里得空間的基本的幾何與拓撲內容;第3章處理了微分學內容;第4,5和6章是關於多變數的積分學的內容。本書有兩個新奇的特徵:第7章是基本但非常重要的常微分方程和二階經典偏微分方程的相關內容;第8章深入介紹了變分法,它被視為類似於多變數微積分中常見的極值問題。

作者介紹
(美)馬丁·莫斯科維茨//福蒂奧斯·帕里奧詹尼斯|責編:杜瑩雪//張嘉芮

目錄
Preface and Acknowledgments
Notations
1  Basic Features of Euclidean Space, Rn
  1.1  Real numbers
    1.1.1  Convergence of sequences of real numbers
  1.2  Rn as a vector space
  1.3  Rn as an inner product space
    1.3.1  The inner product and norm in Rn
    1.3.2  Orthogonality
    1.3.3  The cross product in R3
  1.4  Rn as a metric space
  1.5  Convergence of sequences in Rn
  1.6  Compactness
  1.7  Equivalent norms (*)
  1.8  Solved problems for Chapter 1
2  Functions on Euclidean Spaces
  2.1  Functions from Rn to Rm
  2.2  Limits of functions
  2.3  Continuous functions
  2.4  Linear transformations
  2.5  Continuous functions on compact sets
  2.6  Connectedness and convexity
    2.6.1  Connectedness
    2.6.2  Path-connectedness
    2.6.3  Convex sets
  2.7  Solved problems for Chapter 2
3  Differential Calculus in Several Variables
  3.1  Differentiable functions
  3.2  Partial and directional derivatives, tangent space
  3.3  Homogeneous functions and Euler's equation
  3.4  The mean value theorem
  3.5  Higher order derivatives
    3.5.1  The second derivative
  3.6  Taylor's theorem
    3.6.1  Taylor's theorem in one variable
    3.6.2  Taylor's theorem in several variables
  3.7  Maxima and minima in several variables
    3.7.1  Local extrema for functions in several variables
    3.7.2  Degenerate critical points
  3.8  The inverse and implicit function theorems
    3.8.1  The Inverse Function theorem
    3.8.2  The Implicit Function theorem
  3.9  Constrained extrema, Lagrange multipliers
    3.9.1  Applications to economics
  3.10  Functional dependence
  3.11  Morse's leInma (*)
  3.12  Solved problems for Chapter 3
4  Integral Calculus in Several Variables
  4.1  The integral in Rn
    4.1.1  Darboux sums. Integrability condition

    4.1.2  The integral over a bounded set
  4.2  Properties of multiple integrals
  4.3  Fubini's theorern
    4.3.1  Center of mass, centroid, moment of inertia
  4.4  Smooth Urysohn's lemma and partition of unity (*)
  4.5  Sard's theorem (*)
  4.6  Solved problems for Chapter 4
5  Change of Variables Formula, Improper Multiple Integrals
  5.1  Change of variables formula
    5.1.1  Change of variables; linear case
    5.1.2  Change of variables; the general case
    5.1.3  Applications, polar and spherical coordinates
  5.2  Improper multiple integrals
  5.3  Functions defined by integrals
    5.3.1  Functions defined by improper integrals
    5.3.2  Convolution of functions
  5.4  The Weierstrass approximation theorem (*)
  5.5  The Fourier transform (*)
    5.5.1  The Schwartz space
    5.5.2  The Fourier transform on Rn
  5.6  Solved problems for Chapter 5
6  Line and Surface Integrals
  6.1  Arc-length and Line integrals
    6.1.1  Paths and curves
    6.1.2  Line integrals
  6.2  Conservative vector fields and Poincare's lemma
  6.3  Surface area and surface integrals
    6.3.1  Surface area
    6.3.2  Surface integrals
  6.4  Green's theorem and the divergence theorem in R2
    6.4.1  The divergence theorem in R2
  6.5  The divergence and curl
  6.6  Stokes' theorem
  6.7  The divergence theorem in R3
  6.8  Differential forms (*)
  6.9  Vector fields on spheres and Brouwer fixed point theorem (*)
    6.9.1  Tangential vector fields on spheres
    6.9.2  The Brouwer fixed point theorem
  6.10  Solved problems for Chapter 6
7   Elements of Ordinary and Partial Differential Equations
  7.1  Introduction
  7.2  First order differential equations
    7.2.1  Linear first order ODE
    7.2.2  Equations with variables separated
    7.2.3  Homogeneous equations
    7.2.4  Exact equations
  7.3  Picard's theorem (*)
  7.4  Second order differential equations
    7.4.1  Linear second order ODE with constant coefficients
    7.4.2  Special types of second order ODE; reduction of order

  7.5  Higher order ODE and systems of ODE
  7.6  Some more advanced topics in ODE (*)
    7.6.1  The method of Frobenius; second order equations with variable coefficients
    7.6.2  The Hermite equation
  7.7  Partial differential equations
  7.8  Second order PDE in two variables
    7.8.1  Classification and general solutions
    7.8.2  Boundary value problems for the wave equation
    7.8.3  Boundary value problems for Laplace's equation
    7.8.4  Boundary value problems for the heat equation
    7.8.5  A note on Fourier series
  7.9  The Fourier transform method (*)
  7.10  Solved problems for Chapter 7
8  An Introduction to the Calculus of Variations
  8.1  Simple variational problems
    8.1.1  Some classical problems
    8.1.2  Sufficient conditions
  8.2  Generalizations
    8.2.1  Geodesics on a Riemannian surface
    8.2.2  The principle of least action
  8.3  Variational problems with constraints
  8.4  Multiple integral variational problems
    8.4.1  Variations of double integrals
    8.4.2  The case of n variables
  8.5  Solved problems for Chapter 8
Appendix A  Countability and Decimal Expansions
Appendix B  Calculus in One Variable
  B.1  Differential calculus
  B.2  Integral calculus
    B.2.1  Complex-valued functions
  B.3  Series
Appendix C  Uniform Convergence
  C.1  The Stone-Weierstrass theorem
Appendix D  Linear Algebra
Bibliography
Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032