幫助中心 | 我的帳號 | 關於我們

卓里奇數學分析教程(第2卷第2版英文版)(精)/俄羅斯數學經典

  • 作者:(俄羅斯)弗拉基米爾·卓里奇|責編:陳亮
  • 出版社:世圖出版公司
  • ISBN:9787519296629
  • 出版日期:2022/10/01
  • 裝幀:精裝
  • 頁數:720
人民幣:RMB 189 元      售價:
放入購物車
加入收藏夾

內容大鋼
    本書是一本介紹數學分析的教材,內容涉及從實數到流形上的微分形式,其中包括漸近方法、傅里葉分析、拉普拉斯變換、勒讓德變換、橢圓函數以及頻率分佈。本書語言通俗,表達清晰,各章有大量的練習、思考題以及最新應用實例,收錄了連續映射基本理論;微分總論;多重積分;Rn中的曲面和微分形式;線性和曲面積分;向星分析和場論;流形上的微分形式積分;一致收斂性和分析運算;參數積分;傅立葉級數和傅立葉轉換;漸近展開;期中試題;考試題綱。

作者介紹
(俄羅斯)弗拉基米爾·卓里奇|責編:陳亮

目錄
9 *Continuous Mappings (General Theory)
  9.1  Metric Spaces
    9.1.1  Definition and Examples
    9.1.2  Open and Closed Subsets of a Metric Space
    9.1.3  Subspaces of a Metric Space
    9.1.4  The Direct Product of Metric Spaces
    9.1.5  Problems and Exercises
  9.2  Topological Spaces
    9.2.1  Basic Definitions
    9.2.2  Subspaces of a Topological Space
    9.2.3  The Direct Product of Topological Spaces
    9.2.4  Problems and Exercises
  9.3  Compact Sets
    9.3.1  Definition and General Properties of Compact Sets
    9.3.2  Metric Compact Sets
    9.3.3  Problems and Exercises
  9.4  Connected Topological Spaces
    9.4.1  Problems and Exercises
  9.5  Complete Metric Spaces
    9.5.1  Basic Definitions and Examples
    9.5.2  The Completion of a Metric Space
    9.5.3  Problems and Exercises
  9.6  Continuous Mappings of Topological Spaces
    9.6.1  The Limit of a Mapping
    9.6.2  Continuous Mappings
    9.6.3  Problems and Exercises
  9.7  The Contraction Mapping Principle
    9.7.1  Problems and Exercises
10 *Differential Calculus from a More General Point of View
  10.1  Normed Vector Spaces
    10.1.1  Some Examples of Vector Spaces in Analysis
    10.1.2  Norms in Vector Spaces
    10.1.3  Inner Products in Vector Spaces
    10.1.4  Problems and Exercises
  10.2  Linear and Multilinear Transformations
    10.2.1  Definitions and Examples
    10.2.2  The Norm of a Transformation
    10.2.3  The Space of Continuous Transformations
    10.2.4  Problems and Exercises
  10.3  The Differential of a Mapping
    10.3.1  Mappings Differentiable at a Point
    10.3.2  The General Rules for Differentiation
    10.3.3  Some Examples
    10.3.4  The Partial Derivatives of a Mapping
    10.3.5  Problems and Exercises
  10.4  The Finite-Increment Theorem and Some Examples of Its Use
    10.4.1  The Finite-Increment Theorem
    10.4.2  Some Applications of the Finite-Increment Theorem
    10.4.3  Problems and Exercises
  10.5  Higher-Order Derivatives

    10.5.1  Definition of the nth Differential
    10.5.2  Derivative with Respect to a Vector and Computation of the Values of the nth Differential
    10.5.3  Symmetry of the Higher-Order Differentials
    10.5.4  Some Remarks
    10.5.5  Problems and Exercises
  10.6  Taylor's Formula and the Study of Extrema
    10.6.1  Taylor's Formula for Mappings
    10.6.2  Methods of Studying Interior Extrema
    10.6.3  Some Examples
    10.6.4  Problems and Exercises
  10.7  The General Implicit Function Theorem
    10.7.1  Problems and Exercises
11 Multiple Integrals
  11.1  The Riemann Integral over an n-Dimensional Interval
    11.1.1  Definition of the Integral
    11.1.2  The Lebesgue Criterion for Riemann Integrability
    11.1.3  The Darboux Criterion
    11.1.4  Problems and Exercises
  11.2  The Integral over a Set
    11.2.1  Admissible Sets
    11.2.2  The Integral over a Set
  ……
12 Surfaces and Differential Forms in Rn
13 Line and Surface Integrals
14 Elements of Vector Analysis and Field Theory
15 *Integration of Differential Forms on Manifolds
16 Uniform Convergence and the Basic Operations of Analysis
on Series and Families of Functions
17 Integrals Depending on a Parameter
18 Fourier Series and the Fourier Transform
19 Asymptotic Expansions
Topics and Questions for Midterm Examinations
Examination Topics
Examination Problems (Series and Integrals Depending on a Parameter)
Intermediate Problems (Integral Calculus of Several Variables)
Appendix A Series as a Tool (Introductory Lecture)
Appendix B Change of Variables in Multiple Integrals (Deduction and First Discussion of the Change of Variables Formula)
Appendix C Multidimensional Geometry and Functions of a Very Large Number of Variables (Concentration of Measures and Laws of Large Numbers)
Appendix D Operators of Field Theory in Curvilinear Coordinates
Appendix E Modern Formula of Newton-Leibniz and the Unity of Mathematics (Final Survey)
References
Index of Basic Notation
Subject Index
Name Index

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032