Foreword 1.Combinatorics 1.1.A Quick Reminder 1.2.Partial Fraction 1.3.Geometric Progressions 1.4.Extending the Binomial Theorem 1.5.Recurrence Relations 1.6.Generating Functions 1.7.Of Rabbits and Postmen 1.8.Solutions 2.Geometry 3 2.1.The Circumcircle 2.2.Incircles 2.3.Exercises 2.4.The 6-Point Circle? 2.5.The Euler Line and the Nine Point Circle 2.6.Some More Examples 2.7.Hints 2.8.Solutions 2.9.Glossary 3.Solving Problems 3.1.Introduction 3.2.A Problem to Solve 3.3.Mathematics: What is it? 3.4.Back to Six Circles 3.5.More on Research Methods 3.6.Georg P?lya 3.7.Asking Questions 3.8.Solutions 4.Number Theory 2 4.1.A Problem 4.2.Euler's d-function 4.3.Back to Section 4.2 4.4.Wilson 4.5.Some More Problems 4.6.Solutions 5.Means and Inequalities 5.1.Introduction 5.2.Rules to Order the Reals By 5.3.Means Arithmetic and Geometric 5.4.More Means 5.5.More Inequalities 5.6.A Collection of Problems 5.7.Solutions 6.Combinatorics 3 6.1.Introduction 6.2.Inclusion-Exclusion 6.3.Derangements (Revisited) 6.4.Linear Diophantine Equations Again 6.5.Non-taking Rooks
6.6.The Board of Forbidden Positions 6.7.Stirling Numbers 6.8.Some Other Numbers 6.9.Solutions 7.Creating Problems 7.1.Introduction 7.2.Counting 7.3.Packing 7.4.Intersecting 7.5.Chessboards 7.6.Squigonometry 7.7.The Equations of Squares 7.8.Solutions 8.IMO Problems 2 8.1.Introduction 8.2.AUS 3 8.3.HEL 2 8.4.TUR 4 8.5.ROM 4 8.6.USS 1 8.7.Revue 8.8.Hints - AUS 3 8.9.Hints - HEL 2 8.10.Hints - TUR 4 8.11.Hints - ROM 4 8.12.Hints - USS 1 8.13.Some More Olympiad Problems 8.14.Solutions Index