幫助中心 | 我的帳號 | 關於我們

In-situ Synthesis of Aluminum Matrix Composites(精)

  • 作者:Zhao Yutao
  • 出版社:科學
  • ISBN:9787030710611
  • 出版日期:2022/01/01
  • 裝幀:精裝
  • 頁數:284
人民幣:RMB 199 元      售價:
放入購物車
加入收藏夾

內容大鋼
    全書共九章,主要內容包括:原位反應體系的設計與開發、電磁法合成原位鋁基複合材料、高能超聲法合成原位鋁基複合材料、聲磁耦合法合成原位鋁基複合材料、原位鋁基複合材料的凝固組織及界面結構、塑變加工對原位鋁基複合材料組織的影響、原位鋁基複合材料的力學性能、原位鋁基複合材料的磨損性能。內容豐富、新穎,具有系統性和前瞻性。本書可供從事金屬基複合材料研究與應用的科技人員參考閱讀,也可作為高等院校材料學科研究生的教材或參考書。

作者介紹
Zhao Yutao

目錄
Perface
Chapter 1  Introduction
  1.1  The development history of metal matrix composites
  1.2  In-situ reaction synthesis technology
    1.2.1  Self-propagating high-temperature synthesis (SHS) method
    1.2.2  Exothermic dispersion (XDTM) method
    1.2.3  Contact reaction (CR) method
    1.2.4  Vapor liquid synthesis (VLS) method
    1.2.5  Lanxide method
    1.2.6  Mixed salt reaction (LSM) method
    1.2.7  Direct melt reaction (DMR) method
    1.2.8  Other methods
  1.3  Current status of in-situ aluminum matrix composites
    1.3.1  Design and simulation of in-situ aluminum matrix composites
    1.3.2  Preparation and forming technology of in-situ aluminum matrix composites
    1.3.3  Interface, microstructure, and performance control of in-situ aluminum matrix composites
    1.3.4  Service behavior and damage failure mechanisms of in-situ aluminum matrix composites in simulated environment
  References
Chapter 2  Design and development of in-situ reaction systems
  2.1  Thermodynamics and kinetics of reaction systems
  2.2  Development of new reaction systems for in-situ aluminum matrix composites
    2.2.1  A1-Zr-O system development
    2.2.2  A1-Zr-B system development
    2.2.3  A1-Zr-B-O system development
  References
Chapter 3  Synthesis of in-situ aluminum matrix composites by electromagnetic method
  3.1  Effect of electromagnetic field on melt and chemical reaction
    3.1.1  Distribution of B and F
    3.1.2  Temperature distribution in the electromagnetic field
    3.1.3  Effect of electromagnetic field on the melt
    3.1.4  Effect of electromagnetic field on chemical reactions
  3.2  Law of electromagnetic synthesis of aluminum matrix composites
    3.2.1  Effect of magnetic induction intensity
    3.2.2  Effect of processing time of magnetic field
    3.2.3  Effect of additive amount of reactants
    3.2.4  Effect of initial reaction temperature
  3.3  Mechanism of electromagnetic synthesis of composites
    3.3.1  The condition under which the reactants enter the melt
    3.3.2  Thermodynamic conditions for the electromagnetic synthesis of composites
    3.3.3  Kinetic conditions for the electromagnetic synthesis of composites
  References
Chapter 4  High-energy ultrasonic synthesis of in-situ aluminum matrix composites
  4.1  Effect of high-energy ultrasound on metal melt and reactions
    4.1.1  Application of ultrasonic chemistry in the field of metal matrix composites
    4.1.2  Ultrasonic generator
    4.1.3  Effect of high-energy ultrasound on the microstructure of 2024A1 composite
  4.2  The principle of high-energy ultrasonic synthesis of aluminum matrix composites
    4.2.1  Effect of high-energy ultrasound
    4.2.4  Effect of high-energy ultrasound on composite material synthesized from A356-Ce2(CO3)3 system
    4.2.5  Effect of high-energy ultrasound on composite material synthesized from A356-K2ZrF6-KBF4-Na2B407 system
    4.2.6  Effect of high-energy ultrasound on composite material synthesized from 6063A1-A12(SO4)3 system
    4.2.7  Effect of high-energy ultrasonic on composite material synthesized from 7055Al-(A1-3B) alloy-Ti system
  4.3  Mechanism ofin-situ aluminum matrix composites synthesis under high-energy ultrasound
    4.3.1  The characteristics and principle of ultrasound
    4.3.2  Action mechanism of high-energy ultrasound during in-situ melt reaction
  References
Chapter 5 Synthesis of in-situ aluminum matrix composites by acoustomagnetic coupling field
  5.1  Application of acoustomagnetic coupling method on metal melt and reaction
    5.1.1  Influence of acoustomagnetic field on metal melt and reactions
    5.1.2  Application of acoustomagnetic coupling field in preparation of alloys and composite materials
  5.2  The principle of synthesis of in-situ aluminum matrix composites by acoustomagnetic coupling field
    5.2.1  Reactive synthesis of A13Ti/6070Al composites under acoustomagnetic coupling field
    5.2.2  Reaction synthesis of TiB2/7055A1 composites under acoustomagnetic coupling field
    5.2.3  (A1203+ZrB2)/A356 composite prepared by acoustomagnetic coupling field
  5.3  Mechanism of acoustomagnetic coupled synthesis of aluminum matrix composites
    5.3.1  Flow of molten aluminum in ultrasonic field
    5.3.2  Flow field analysis in electromagnetic stirring process
    5.3.3  Analysis of the coupling effect of ultrasonic field and magnetic field
  References
Chapter 6  Interface structure of matrix/in-situ reinforcement
  6.1  Morphology and growth mechanism of in-situ A13Zr
    6.1.1  TEM morphology and crystal structure of in-situ A13Zr
    6.1.2  Formation and growth mechanism of in-situ AI3Zr phase
  6.2  Morphology and formation mechanism of in-situ A1203
    6.2.1  Classification and crystalline structure of A1203
    6.2.2  Morphology and growth mechanism of A1203 reinforcement particles
    6.2.3  Dislocation at the particle/matrix interface
    6.2.4  Generation mechanism of dislocation
  6.3  Interface structure of in-situ (A13Zr+A1203)/A356 composites
    6.3.1  Interfacial structure of A13Zr/A1 and A1203/A1
    6.3.2  Orientation relationship of A13Zr/AI interface and atomic arrangement
    6.3.3  The interfacial structure of ot-A1203/Si
  6.4  Distribution of dislocations and micro-hardness near the interface
    6.4.1  Dislocations at particle/matrix interface
    6.4.2  Micro-hardness of particle/matrix interface
  References
Chapter 7  Mechanical properties of in-situ aluminum matrix composites
  7.1  Mechanical properties of in-situ aluminum matrix composites at room temperature
  
  References
Chapter 8  Plastic forming of in-situ aluminum matrix composites
  8.1  Hot extrusion of in-situ aluminum matrix composites
    8.1.1  The effect of hot extrusion on the microstructure of AI203p/6063A1 composites
    8.1.2  The effect of hot extrusion on the microstructure of ZrBz/6063A1 composites
    8.1.3  The effect of hot extrusion on the microstructure of ZrB2/2024A1 composites
  8.2  Forging and rolling of in-situ aluminum matrix composites
    8.2.1  The influence of forging and rolling on the microstructure of A1203p/6063A1 composites
    8.2.2  The effect of forging on the microstructure of A1-Zr-B composites
    8.2.3  The effect of rolling on the microstructure of AI-Zr-B composites
    8.2.4  The influence of forging and rolling on the microstructure of A1-Ti-B composites
    8.2.5  The effect of forging on the microstructure of ZrB2/2024A1 composites
    8.2.6  Mechanism and plastic deformation model of forging on in-situ composites
  8.3  Friction stir processing of in-situ aluminum matrix composites
    8.3.1  The influence of friction stir processing on ZrB2/2024AI composites
    8.3.2  The influence of friction stir processing on ZrB2/6063A1 composites
    8.3.3  The effect of friction stir processing on A13Zr/6063A1 composites
    8.3.4  The effect of friction stir processing on A13Ti/2024A1 composites
  References
Chapter 9 Wear properties of in-situ aluminum matrix composites
  9.1  Wear performance of in-situ aluminum matrix composites at room temperature
    9.1.1  Wear performance of hyper-eutectic A1-Si alloy matrix composites
    9.1.2  Friction and wear performance of ZL101A aluminum matrix composites
  9.2  Wear performance of in-situ aluminum matrix composites at high temperature
    9.2.1  Test conditions of high-temperature friction and wear
    9.2.2  High-temperature friction and wear performance of high silicon aluminum alloy and its composites
  9.3  Wear mechanism of in-situ aluminum matrix composites
    9.3.1  Analysis of the worn surface morphology of composite
    9.3.2  Analysis of dry sliding wear mechanism of composites
  References

  • 商品搜索:
  • | 高級搜索
首頁新手上路客服中心關於我們聯絡我們Top↑
Copyrightc 1999~2008 美商天龍國際圖書股份有限公司 臺灣分公司. All rights reserved.
營業地址:臺北市中正區重慶南路一段103號1F 105號1F-2F
讀者服務部電話:02-2381-2033 02-2381-1863 時間:週一-週五 10:00-17:00
 服務信箱:bookuu@69book.com 客戶、意見信箱:cs@69book.com
ICP證:浙B2-20060032